
MC-Nonlocal-PINNs: handling nonlocal oper-
ators in PINNs via Monte Carlo sampling

Xiaodong Feng1,∗, Yue Qian1 and Wanfang Shen 2

1 Institute of Computational Mathematics and Scientific/Engineering Com-
puting, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing, China.
2 Shandong Key Laboratory of Blockchain Finance, Shandong University of
Finance and Economics, Jinan 250014, China.

Abstract. We propose, Monte Carlo Nonlocal physics-informed neural networks
(MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in [1], for solving
general nonlocal models such as integral equations and nonlocal PDEs. Similar as
in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte
Carlo way, resulting in a very stable approach for high dimensional problems. We
present a variety of test problems, including high dimensional Volterra type integral
equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the
effectiveness of our approach.

AMS subject classifications: 65C05, 65D30, 65R20
Key words: Nonlocal models, PINNs, Monte Carlo sampling, deep neural networks.

1. Introduction

Deep neural networks have gained a growing interest in recent years with a wide
variety of methods ranging from computer vision and natural language processing to
simulations of physical systems [2–5]. A representative example is physics-informed
neural networks(PINNs) [6], whose central idea is to incorporate governing laws of
physical systems into the training loss function and recast the original problem into an
optimization problem. PINNs have demonstrated remarkable success in applications
including fluid mechanics [7,8], high dimensional PDEs (with applications in computa-
tional finance) [9–11], uncertainty quantification [12–17], to name just a few.

For PDE models with classic (integer) derivatives, PINNs adopt automatic differ-
entiation to solve PDEs by penalizing the PDE in the loss function at a random set
of points in the domain of interest. However, for PDE models involving nonlocal op-
erators, one can no longer use the automatic differentiation to handle the operators

∗Corresponding author. Email addresses: xdfeng@lsec.cc.ac.cn (X. Feng),
qianyue2021@lsec.cc.ac.cn (Y. Qian), wfshen@sdufe.edu.cn (W. Shen)

ar
X

iv
:2

21
2.

12
98

4v
1

 [
m

at
h.

N
A

]
 2

6
D

ec
 2

02
2

2 X. Feng, Y. Qian and W. Shen

due to the nonlocal property. To overcome this issue, fPINNs [18] was developed for
solving space-time fractional advection-diffusion equations. The main idea in [18] is to
introduce a classic discretization technique to handle the fractional operator. However,
this is not a good choice for high dimension problems since the curse of dimensionality.
Similar idea has been used to handle more general non-local operators in [19], while
the approach again can not be used for high dimensional cases. We also mention the
work [20], where the so called A-PINN was proposed to handle some special types of
integral equations.

More recently, the MC-fPINNs approach was proposed in [1] to handle fractional
PDEs, where the fractional operators are handled in a Monte Carlo way, resulting in
a very stable approach for high dimensional problems. Take the fractional Laplacian
equation as an example:

(−∆)α/2u(x) = Cd,α P.V.

∫
Rd

u(x)− u(y)

‖x− y‖d+α
2

dy, 0 < α < 2, (1.1)

where P.V. denotes the principle value of the integral and Cd,α is a constant depending
on α and d. One can divide the integral into the following two parts:

(−∆)α/2u(x) = Cd,α

(∫
y∈Br0 (x)

u(x)− u(y)

‖x− y‖d+α
2

dy +

∫
y/∈Br0 (x)

u(x)− u(y)

‖x− y‖d+α
2

dy

)
. (1.2)

It is shown that the fractional Laplacian of u(x) can be calculated via the following
approximation:

(−∆)α/2u(x) =Cd,α

∣∣Sd−1
∣∣ r2−α

0

2(2− α)
Eξ,rI∼fI(r)

[
2u(x)− u(x− rIξ)− u(x+ rIξ)

r2
I

]
+ Cd,α

∣∣Sd−1
∣∣ r−α0

2α
Eξ,rO∼fO(r) [2u(x)− u(x− rOξ)− u(x+ rOξ)] ,

(1.3)
where

∣∣Sd−1
∣∣ denotes the surface area of Sd−1, ξ is uniformly distributed on the sphere

Sd−1, and rI , rO can be quickly sampled via

rI/r0 ∼ Beta(2− α, 1), r0/rO ∼ Beta(α, 1). (1.4)

More precisely, one can resort to the classic Monte Carlo sampling to handle the frac-
tional Laplacian (see in [1] for more details).

The main aim of this work is to extend the idea in [1] to more general nonlocal
operators. Our new contributions are summarized as follows:

• We generalize MC-fPINNs to MC-Nonlocal-PINNs, which can handle more gen-
eral nonlocal models such as Volterra type integral equations with either bounded
or singular kernels, hypersingular integral equations, and nonlocal PDEs with var-
ious kernels.

MC-Nonlocal-PINNs 3

• We present several high dimensional examples to show the effectiveness of the
MC-Nonlocal-PINNs approach.

The remainder of this paper is structured as follows. In Section 2, we present some
preliminaries. In Section 3, we present our MC-Nonlocal-PINNs approach for solving
general nonlocal problems. This is followed by numerical tests in Section 4. Finally,
we give some concluding remarks in Section 5.

2. Preliminaries

In this section, we present some preliminaries.

2.1. Physics-informed neural network

In this section, we first give a brief review on physics informed neural networks
(PINNs) [6, 18]. To this end, we consider the following PDE{

Lx[u](x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(2.1)

Here Lx is a differential operator, and Ω is a domain of interest. A deep neural network
(DNN) is a sequence alternative composition of linear functions and nonlinear activation
function. The PINNs approach uses the output of DNN, uNN (x; θ), to approximate
the solution of equation u(x) and calculate the differential operator via automatic
differentiation. Here θ is a collection of the all learnable parameters in the DNN.
Specifically, define the PDE residual as

r(x; θ) = LxuNN (x; θ)− f(x), (2.2)

then θ can be learned by minimizing the following composite loss function

L(θ) = wr · Lr(θ) + wb · Lb(θ), (2.3)

where

Lr(θ) =
1

2

Nr∑
i=1

∣∣r(xir; θ)∣∣2 and Lb(θ) =
1

2

Nb∑
i=1

∣∣uNN (xib; θ)− g(xib)
∣∣2, (2.4)

{wr, wb} are weights and {xir}
Nr
i=1, {xib}

Nb
i=1 denote the training data.

If Lx in Eq.(2.1) is a local differential operator, we can easily compute its value
via automatic differentiation; otherwise we must first deal with the operator Lx due
to the nonlocal property. Here we remark that the fPINNs [18] was proposed to solve
fractional advection-diffusion equations.

4 X. Feng, Y. Qian and W. Shen

2.2. MC-fPINNs

Notice that the nonlocal properties bring difficulties for solving PDEs via automatic
differentiation, here we briefly introduce the MC-fPINNs in [1], which handle fractional
Laplacian operator by a directly Monte Carlo sampling. Let Ω ∈ Rd be a spatial
domain, and we denote by x ∈ Ω the spatial variable. Consider the standard fractional
Laplacian equation

(−∆)α/2u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Rd\Ω,
(2.5)

where 0 < α < 2, the fractional Laplacian operator ∆α/2u(x) is defined by (1.1) and
f(x), g(x) are given functions. The MC-fPINNs solve the above PDE problems via
constructing a DNN model uNN (x; θ), parametrized by θ, to approximate the solution
u(x). Specifically, notice that the fractional operator can be represented as an integral
formulation (1.3), hence the fractional operator of the uNN can be calculated as follows:

(−∆)α/2uNN (x; θ) =Cd,α

∣∣Sd−1
∣∣ r2−α

0

2(2− α)
Eξ,rI∼fI(r)

[
2uNN (x; θ)− uNN (x− rIξ; θ)− uNN (x+ rIξ; θ)

r2
I

]
+ Cd,α

∣∣Sd−1
∣∣ r−α0

2α
Eξ,rO∼fO(r) [2uNN (x; θ)− uNN (x− rOξ; θ)− uNN (x+ rOξ; θ)] ,

(2.6)
where Cd,α, S

d−1, r0, rI , rO, fI , fO are as prescribed before. Then the residual loss of
the PDE (2.5) can be written as

Lr(θ) =

Nr∑
i=1

∣∣(−∆)α/2uNN (xir; θ)− f(xir)
∣∣2, (2.7)

where {xir}
Nr
i=1 denotes training data and (−∆)α/2uNN (x; θ) is computed via (2.6).

3. MC-Nonlocal-PINNs

In this section, we present our MC-Nonlocal-PINNs approach, which is a general-
ization of the original MC-fPINNs. We shall mainly consider three typical types of
models: Volterra equations, hypersingular equations and nonlocal PDEs.

3.1. Volterra type equations

Integral and integro-differential equations, in which the unknown function appears
inside an integral sign, have been widely employed in different fields, such as population
growth [21], acoustic scattering [22, 23], mechanics and plasma physics [24]. In this
section, we consider a framework for volterra integral and integro-differential equations.
A standard integral equation has the form of

u(x) = f(x) + λ ·
∫ h2(x)

h1(x)
K(x, s)u(s)ds, (3.1)

MC-Nonlocal-PINNs 5

where h1(x) and h2(x) are the limits of integration, λ is a constant parameter, K(x, s)
is called the kernel of the integral equation. Here functions f(x) and K(x, s) are given
in advance and u(x) is the unknown quantity. Without loss of generality, we assume
that K(x, s) ≥ 0.

An integro-differential equation contains an additional derivative operator compared
with the original integral equation

Nx[u](x) = f(x) +

∫ h2(x)

h1(x)
K(x, s)u(s)ds, (3.2)

where Nx denotes a differential operator with respect to x and others are as prescribed
before.

To ease the discussion we use notation IDEs to express integral and integro-differential
equations. The limits of integration are used to characterize IDEs. When h1(x) and
h2(x) are fixed(independent of x), the form of Eq. (3.2) is called Fredholm equa-
tion; when at least one of h1(x) and h2(x) is variable, the form of Eq. (3.2) is
called Volterra equation. If the equation contains nonlinear functions of u(x), such
as sin(u), eu, ln(1+u), the IDEs are called nonlinear. In this work, we focus on forward
(non-)linear IDEs, including Fredholm and Volterra types.

3.2. Hypersingular integral equations

Many physical problems can be modeled by boundary integral equations with
Hadamard-type hypersingular kernels, such as acoustic and solid mechanics [25–27].
The concept of hypersingular integrals was introduced by Hadamard which is defined
by the limit of an expansion, ignoring those diverging terms.

Definition 3.1. Assume that u is a function defined on (0, β) and that there exists the
following expansion:

u(ε) =
N∑
n=0

Mn∑
m=0

unmε
τn logm ε+ U(ε), (3.3)

where

τN ≤ τN−1 ≤ · · · ≤ τ1 ≤ τ0 = 0 (3.4)

and uj0 = 0 if τj = 0(0 ≤ j ≤ N). If limε→0 U(ε) exists then the finite-part limit of
f(ε) as ε→ 0 is defined by

F.P. lim
ε→0

u(ε) = lim
ε→0

U(ε). (3.5)

One of the major problems arising numerical methods is how to evaluate the fol-
lowing hypersingular integral efficiently

I(u, s) :=

∫ b

a
=

u(x)

(x− s)2
dx, s ∈ (a, b), (3.6)

6 X. Feng, Y. Qian and W. Shen

where
∫
= denotes a hypersingular integral and s is the singular point. Using the

Definition 3.1, we have∫ b

a
=

u(x)

(x− s)2
dx = F.P. lim

ε→0

{∫ s−ε

a

u(x)

(x− s)2
dx+

∫ b

s+ε

u(x)

(x− s)2
dx

}
. (3.7)

Similarly, two dimensional hypersingular integrals can be derived. Without loss of
generality, we consider the two dimensional region Ω with a boundary described by the
equation R = R(ν), 0 ≤ ν ≤ 2π, with origin point (0, 0) of Ω. We consider the following
hypersingular integral∫∫

==
Ω

u(x1, x2)

r3
dx1dx2 =

∫ 2π

0

[∫
=

R(ν)

0

u(r cos ν, r sin ν)

r2
dr

]
dν, (3.8)

where r =
√
x2

1 + x2
2 and

∫
= is defined as before.

3.3. Nonlocal PDEs

In many scientific and engineering problems, standard local models are not sufficient
to accurately describe certain nonlocal phenomena, e.g., interactions at a distance.
Hence nonlocal PDEs, which can express a more general description of the dynamical
system, have been developed. Here we mention that peridynamics model for continuum
mechanics [28,29] and anomalous diffusion models [30,31].

In general, given the bounded, open domain Ω ⊂ Rd and given a constant δ > 0,
we define the interaction domain corresponding to Ω as

ΩIδ := {y ∈ Rd\Ω such that y ∈ Bδ(x) for some x ∈ Ω}, (3.9)

where Bδ(x) denotes the ball of radius δ centered at x. For δ > 0, we consider the
nonlocal problem [32] for a scalar-valued function u(x) defined on Ω ∪ ΩIδ , given by{

−Lδu(x) = f(x), ∀x ∈ Ω,
Vu(x) = g(x), ∀x ∈ ΩIδ .

(3.10)

Here f(x) and g(x) are given scalar-valued functions and

Lδu(x) := 2

∫
Ω∪ΩIδ

(u(y)− u(x))γδ(x, y)dy for all x ∈ Ω, (3.11)

where γδ(x, y) is a symmetric function, that is,

γδ(x, y) = γδ(y, x), (3.12)

and for any x,

supp
(
γδ(x, y)

)
= Bδ(x). (3.13)

MC-Nonlocal-PINNs 7

We assume γδ(x, y) can be written in the form

γδ(x, y) = φδ(x, y)θδ(x, y)XBδ(x)(y), (3.14)

where θδ(x, y) and φδ(x, y) denote non-negative, symmetric, scalar-valued functions.
We will refer to γδ(x, y) as the kernel, φδ(x, y) as the kernel function and θδ(x, y) as a
constitutive function. Because θδ(x, y) is a constitutive function which is not specific
even within a single application, we focus on choices for the function φδ(x, y):

• Translation-invariant, integral kernel functions. φδ(x, y) = φδ(x−y) and satisfies
for some positive constant C > 0,

C ≤
∫

Ω∪ΩIδ

φδ(y − x)dy <∞ for all x ∈ Ω ∪ ΩIδ .

• “Critical” kernel functions.

φδ(x, y) ∝ 1

‖y − x‖d
.

• “Peridynamic” kernel functions.

φδ(x, y) ∝ 1

‖y − x‖
.

• Fractional kernel functions.

φδ(x− y) ∝ 1

‖y − x‖d+2s
,

where s ∈ (0, 1).

For more details one can refer to [32] and references therein.

3.4. Monte Carlo sampling for nonlocal operators

Note that PINNs expresses the derivatives via automatic differentiation, which is
not valid for IDEs and nonlocal operators. In this section, we propose a MC procedure
to circumvent this situation. To this end, we first consider the IDE (3.2). For simplicity,
we set h1(x) = 0, h2(x) = x,

u(x) = f(x) +

∫ x

0
K(x, s)u(s)ds. (3.15)

We mainly consider two cases:

8 X. Feng, Y. Qian and W. Shen

• Bounded kernel. If K(x, s) is uniformly bounded for x and s, then we adopt
stochastic approximation via MC sampling as follows:∫ x

0
K(x, s)u(s)ds = x · Eξ∼U [0,1] [K(x, xξ)u(xξ)] , (3.16)

where ξ is uniformly distributed on the interval [0, 1].

• Weakly singular kernel. Here, we set K(x, s) = (x − s)−α, 0 < α < 1. In fact,
it can be viewed as a generalized Abel’s type equation, which occurs in many
branches of scientific fields, such as microscopy, seismology, electron emission,
plasma diagnostics.

Notice that the kernel |K(t, s)| = (t − s)−α is unbounded, yet integrable, hence
one can view it as a scaled probability density function of Beta distribution. More
precisely, we have∫ x

0
(x− s)−αu(s)ds =

∫ x

0
s−αu(x− s)ds =

x1−α

1− α
Eξ∼Beta(1−α,1) [u(x− xξ)] .

(3.17)

• Hypersingular integral (3.6). Using the definition (3.7), one can rewrite it as
follows:∫ b

a
=

u(x)

(x− s)2
dx =

∫ b

a

∫ 1

0
(1− t)∂

2u

∂x2

(
(1− t)s+ tx

)
dtdx

− u(s)

(
1

b− s
+

1

s− a

)
+
∂u

∂x
(s) ln

b− s
s− a

.

(3.18)

Then we can approximate the above hypersingular integral via MC sampling∫ b

a
=

u(x)

(x− s)2
dx =Et∼U [0,1],x∼U [a,b]

[
(1− t)∂

2u

∂x2

(
tx+ (1− t)s

)]
− u(s)

(
1

b− s
+

1

s− a

)
+
∂u

∂x
(s) ln

b− s
s− a

.

(3.19)

For the hypersingular integral (3.8), one can rewrite it as follows:∫∫
==

Ω

u(x1, x2)

r3
dx1dx2

=

∫ 2π

0

[
− 1

R(ν)
ũ(0, ν) +

∂ũ

∂r
(0, ν) ln(R(ν)) +

∫ R(ν)

0

∫ 1

0
(1− t)∂

2ũ

∂r2
(tr, ν)dtdr

]
dν,

(3.20)
where ũ(r, ν) = u(r cos ν, r sin ν). Then we approximate it via MC sampling∫∫

==
Ω

u(x1, x2)

r3
dx1dx2

= Eν∼U [0,2π]

[
− 1

R(ν)
ũ(0, ν) +

∂ũ

∂r
(0, ν) ln(R(ν)) + Er∼U [0,R(ν)],t∼U [0,1](1− t)

∂2ũ

∂r2
(tr, ν)

]
.

(3.21)

MC-Nonlocal-PINNs 9

For the nonlocal model (3.10) with the integral operator (3.11), our goal is to
approximate

Lδu(x) = 2

∫
Ω∪Ωδ

(u(y)− u(x))γδ(x, y)dy. (3.22)

We assume that

γδ(x, y) =
1

‖y − x‖α
· 1‖y−x‖<δ, α ∈ (0, d+ 2). (3.23)

The corresponding stochastic approximation is

Lδu(x) = 2

∫
y∈Bδ(x)

u(y)− u(x)

‖y − x‖α2
dy = 2

∫
‖y‖2<δ

u(x+ y)− u(x)

‖y‖α2
dy

=

∫
‖y‖2<δ

u(x+ y)− 2u(x) + u(x− y)

‖y‖α2
dy

=

∫
Sd−1

∫ δ

0

u(x+ rξ)− 2u(x) + u(x− rξ)
rα

· rd−1drdξ

=

 δd−α|Sd−1| · Eξ,r∼U [0,1]

[
u(x+δrξ)−2u(x)+u(x−δrξ)

rα+1−d

]
, α ∈ (0, d],

δd+2−α

d+2−α |S
d−1| · Eξ,r∼Beta(d+2−α,1)

[
u(x+δrξ)−2u(x)+u(x−δrξ)

δ2r2

]
, α ∈ (d, d+ 2),

(3.24)
where ξ is uniformly distributed on Sd−1, |Sd−1| denotes the surface area of Sd−1.

Note that as r → 0 we have

lim
r→0+

u(x+ δrξ)− 2u(x) + u(x− δrξ)
δ2r2

=
∂2
ru(x)

∂r2

∣∣∣∣
r=0

, (3.25)

which may suffer from rounding errors for extremely small δr. Thus we truncate
r with rε = max{r, ε}, and replace variable r in the integrand with rε, where
ε > 0 is a small positive number.

3.5. MC-Nonlocal-PINNs

Based on the above stochastic approximation, we are ready to present our algorithm.
For IDEs, because the equation in (3.2) combines the differential operator and the
integral operator, it is necessary to define boundary conditions

u(x) = g(x), x ∈ Γ. (3.26)

For the nonlocal model, we must address the corresponding non-zero volume boundary
u(x)(x ∈ ΩIδ). In neural network framework, we address it by adding additional soft
penalties in the final loss function. The schematic of MC-Nonlocal-PINNs is shown in
Figure 1. Specifically, we have access to some collocation points {xir}Nri=1 ⊂ Ω, {xib}

Nb
i=1 ⊂

∂Ω (or ΩIδ). Following the stochastic approximation and automatic differentiation, we

10 X. Feng, Y. Qian and W. Shen

can calculate the loss functions Lr(θ),Lb(θ). The weights for each component are given
by adaptive strategy:

[wr, wb] =
[Lr(θ),Lb(θ)]

min{Lr(θ),Lb(θ)}
. (3.27)

We summarize our method in Algorithm 3.1.

Figure 1: The architecture of MC-Nonlocal-PINNs.

Algorithm 3.1 MC-Nonlocal-PINNs

• 1. Specify the training set

D =
{
{xir}Nri=1, {x

i
b}
Nb
i=1

}
.

• 2. Sample N snapshots from the above training data

• 3. Calculate the loss L(θ) = wr · Lr(θ) + wb · Lb(θ) for via (2.3) and (3.27)

• 4. Let W ← W − η ∂L∂W to update all the involved parameters W , where η is the
learning rate

• 5. Repeat Steps 2-4 until convergence

4. Numerical experiments

In this section, we present a series of comprehensive numerical tests to demon-
strate the effectiveness of proposed algorithm. We investigate the performance of MC-
Nonlocal-PINNs for solving Volterra-type equations and hypersingular integral equa-
tions, then we illustrate the efficiency of the MC-Nonlocal-PINNs method to solve gen-
eral nonlocal equations. To quantitatively evaluate the accuracy of numerical solution,

MC-Nonlocal-PINNs 11

we shall consider L2 relative error of the predicted solution:

Relative L2 error =
‖uNN (x)− u(x)‖2

‖u(x)‖2
,

where u and uNN are fabricated and surrogate solutions, respectively.

Throughout all experiments, the DNNs model contains four hidden layers with 64
neurons per hidden layer. We shall employ hyperbolic tangent activation functions
(Tanh) and initialize all trainable parameters using Glorot initialization, unless stated
otherwise. All networks are trained using the Adam optimizer with default settings and
the L-BFGS optimizer. We adopt exponential learning rate decay with a decay-rate of
0.9 every 1000 training iterations.

4.1. Volterra integral equation

4.1.1. 1D bounded kernel problem

Consider the following example:

u(x) = f(x) +

∫ x

0
K(x, s)u(s)ds, 0 ≤ x ≤ 1, (4.1)

where the exact solution and the corresponding terms are given as follows:

u(x) = sin(πx), f(x) =

(
1− 1

2π

)
sin(πx)− cos(πx)/2π, K(x, s) = − sin(π(x− s)).

Note that kernel K(x, s) is bounded in [0, 1] × [0, 1], one can rewrite the equation as
follows

u(x) = f(x) + Es∼U [0,1] [x ·K(x, xs) · u(xs)] .

As is described in Section 3, we approximate the expectation using Monte Carlo method:

Es∼U [0,1] [x ·K(x, xs) · uNN (xs; θ)] ≈ 1

Ns

Ns∑
i=1

x ·K(x, xsi) · uNN (xsi; θ),

where si ∼ U [0, 1] and Ns is the number of discrete integration points. We use 128
uniformly distributed training points in the space domain for each batch and train
the MC-Nonlocal-PINNs using Adam optimizer with an initial learning rate of 0.001
to 1000 iterations, then we continue to train the model using L-BFGS with adaptive
learning rate to 1000 iterations. Figure 2 shows the comparison between the predicted
and the exact solution for Ns = 40. We observe that the predictions achieve an
excellent agreement with the corresponding ground truth. Furthermore, we investigate
the performance under the cases of different sample numbers Ns, the final result is
reported on the right of Figure 2. When increasing the sample number Ns, the relative
L2 error of uNN decreases from 4.74% to 0.19%.

12 X. Feng, Y. Qian and W. Shen

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 exact
pred

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

2 5 10 20 30 40
sample number

10 2

re
la

tiv
e

L2 e
rro

r

Figure 2: Volterra equation (1D bounded kernel). Left : exact and predicted solutions. Middle : absolute
error. Right : the relative L2 error for different Ns.

4.1.2. 1D weakly singular kernel problem

In this example, we still consider the above equation (4.1) with a singular kernel.
Specifically, we take

u(x) =
sin(x)√

x
, f(x) =

sin(x)√
x

+ π sin
(x

2

)
J0

(x
2

)
, K(x, s) = −(x− s)−α,

where α = 1/2 and J0(z) is the Bessel function of the first kind defined by

J0(z) =
∞∑
k=0

(−z2)k

(k!)24k
. (4.2)

Similarly, we can rewrite the equation as

u(x) = f(x) + 2
√
x · Es∼Beta(0.5,1) [u(x− xs)] ,

and approximate the expectation using MC sampling

uNN (x; θ) ≈ f(x) +
2
√
x

Ns
·
Ns∑
i=1

uNN (x− xsi; θ),

where si ∼ Beta(0.5, 1) and Ns is the number of discrete integration points. We set
batch size to 128 and Ns to 100, and train the MC-Nonlocal-PINNs using the Adam
optimizer with initial learning rate 0.001 to 1000 iterations, then we continue to train
the model using L-BFGS with adaptive learning rate to 2000 iterations. The results for
the exact and the predicted solutions are presented in Figure 3. As is shown, a good
agreement can be achieved between the ground truth and predicted solution. And
relative L2 errors for different sample number Ns are shown on the right of Figure 3.

MC-Nonlocal-PINNs 13

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8
exact
pred

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

2 5 10 20 30 40
sample number

10 2

2 × 10 2

3 × 10 2

4 × 10 2

re
la

tiv
e

L2 e
rro

r

Figure 3: Volterra equation (1D singular kernel). Left : exact and predicted solutions. Middle : absolute
error. Right : the relative L2 error for different Ns.

4.1.3. 1D Fredholm problem

In this section, we consider a nonlinear 1D Fredholm IDE:

du

dx
= cos(x)− x+

1

4

∫ π/2

−π/2
xtu2(t)dt, u(−π

2
) = 0.

And the corresponding exact solution is chosen as u(x) = 1+sin(x). Since the limits of
integration are constants, we can approximate the expectation using uniform sampling
method

∂uNN (x; θ)

∂x
≈ cos(x)− x+

π

4Ns

Ns∑
i=1

xsi · uNN (si; θ)
2,

where si ∼ U [−π/2, π/2]. We use 128 uniformly distributed training points in the space
domain for each batch. We take Ns = 400 and train the MC-Nonlocal-PINNs using the
Adam optimizer with initial learning rate 0.001 to 5000 iterations, then we continue
to train the model using L-BFGS with adaptive learning rate to 2000 iterations. And
the final results are shown in Figure 4. We can observe that as sample number (Ns)
increases, the relative L2 error decreases from 6.3% to 0.49%.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 exact
pred

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

25 50 100 200 400
sample number

10 2

re
la

tiv
e

L2 e
rro

r

Figure 4: Fredholm equation. Left : exact and predicted solutions. Middle : absolute error. Right : the
relative L2 error for different Ns.

14 X. Feng, Y. Qian and W. Shen

4.1.4. High dimensional bounded kernel problem

Consider the following 10D Volterra IDE [20]:


∂u(t, x1, · · · , x9)

∂t
+

9∑
i=1

∂u(t, x1, · · · , x9)

∂xi
= f(t, x1, · · · , x9),

f(t, x1, · · · , x9) = u(t, x1, · · · , x9) + g(t, x1, · · · , x9) +

∫ x9

0
· · ·
∫ x1

0

∫ t

0
s0 · u(s0, s1, · · · , s9)ds0ds1 · · · ds9,

where 0 ≤ t, x1, · · · , x9 ≤ 1. The exact solution is

u(t, x1, · · · , x9) = t · (x1 + x2 + x3) · sin(x4 + x5 + x6) · cos(x7 + x8 + x9).

Our goal is to approximate the 10-dimensional integral terms. After some simple
calculations, we have

∫ x9

0
· · ·
∫ x1

0

∫ t

0
s0·u(s0, s1, · · · , s9)ds0ds1 · · · ds9 ≈ x1x2 · · ·x9·t2·

1

Ns

Ns∑
i=1

u(tsi0, x1s
i
1, · · · , x9s

i
9),

where (si0, s
i
1, · · · , si9) ∼ U [0, 1]10. The training set consists of two parts: 10000 col-

location points randomly sampled in the equation domain and 1000 boundary points
randomly sampled on each boundary. We take 10 Monte Carlo points to approxi-
mate integral terms, i.e., Ns = 10, and train the MC-Nonlocal PINNs using LBFGS
optimizer 40000 iterations. To elucidate the solution of our method, we select two
different planes [1, 1, 1, 1, 0, 1, 1, x8, x9] and [1, 1, 0, 0, x4, x5, 0, 0, 0, 0]. The correspond-
ing exact solutions are u(0.5, 1, 1, 1, 0, 1, 1, x8, x9) = 3 · sin(2) · cos(x8 + x9 + 1) and
u(0.5, 1, 0, 0, x4, x5, 0, 0, 0, 0) = sin(x4 + x5)/2. The final results are shown in Figure
5 and final relative L2 error is 0.134%. It is noticed that our method achieves bet-
ter accuracy than the A-PINN approach (0.519%) without introducing 10 auxiliary
variables.

MC-Nonlocal-PINNs 15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Predicted

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Exact

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Absolute error

0.001

0.002

0.003

0.004

0.005

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Predicted

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Exact

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Absolute error

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Figure 5: 10D Volterra equation. From left to right: predicted solutions, exact solutions and corresponding
absolute errors.

4.1.5. High dimensional singular kernel problem

Consider the following PDE:

∂u(t, x1, · · · , xd)
∂t

+

d∑
i=1

∂u(t, x1, · · · , xd)
∂xi

= f(t, x1, · · · , xd),

f(t, x1, · · · , xd) = u(t, x1, · · · , xd) + g(t, x1, · · · , xd)

+

∫ xd

0
· · ·
∫ x1

0

∫ t

0
(t− s0)−α(x1 − s1)−α · · · (xd − sd)−αu(s0, s1, · · · , sd)dtds1 · · · dsd.

Here α = 1/2,Ω = [0, 1]d+1, d is spatial dimension. The exact solution is

u(x) =
(
1− ‖x‖22

)
e−t.

In this example, we take d = 3, 7 and 10 Monte Carlo points to approximate integral
terms, i.e., Ns = 10. The training set consists of two parts: 10000 collocation points
randomly sampled in the equation domain and 1000 boundary points randomly sampled
on each boundary. Then we train the MC-Nonlocal PINNs using LBFGS optimizer
40000 iterations. We select two different planes to elucidate the solution of our method.
The final results are shown in Figure 6, 7. It is observed that the predictions achieve
an excellent agreement with the corresponding ground truths for both d = 3 and d = 7.
The corresponding relative L2 errors for different sample numbers (Ns) are shown in
Figure 8.

16 X. Feng, Y. Qian and W. Shen

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Predicted

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Exact

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Absolute error

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Predicted

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Exact

1.2

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Absolute error

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6: 4D Volterra equation. From left to right: predicted solutions, exact solutions and the corresponding
absolute errors.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Predicted

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Exact

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Absolute error

0.01

0.02

0.03

0.04

0.05

0.06

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Predicted

1.8

1.7

1.6

1.5

1.4

1.3

1.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Exact

1.8

1.7

1.6

1.5

1.4

1.3

1.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Absolute error

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 7: 8D Volterra equation. From left to right: predicted solutions, exact solutions and the corresponding
absolute errors.

MC-Nonlocal-PINNs 17

2 5 10 20 30 40
sample number

10 1

re
la

tiv
e

L2 e
rro

r

dim=4
dim=8

Figure 8: High dimensional volterra singular kernel problem. Relative L2 error for different Ns.

4.2. Hypersingular integral equations

4.2.1. 1D example

Consider the following hypersingular integral equation

∫ 1

0
=

u(x)

(x− s)2
dx = −1

2
+ 3s+ (3s2 − 2s) ln

1− s
s

, ∀s ∈ (0, 1), (4.3)

with boundary condition u(0) = u(1) = 0. The exact solution is

u(x) = x2(x− 1).

We approximate the hypersingular integral via

1

Ns

Ns∑
i=1

[
(1− ti)

∂2uNN
∂x2

(
tixi + (1− ti)s; θ

)]
−uNN (s; θ)

(
1

1− s
+

1

s

)
+
∂uNN
∂x

(s; θ) ln
1− s
s

,

(4.4)
where (ti, xi) ∼ U [0, 1]2 and Ns is the number of discrete integration points. Note that
Eq. (4.4) holds for every s ∈ (0, 1), we use 100 uniformly distributed training points
for s. We train the MC-Nonlocal-PINNs using the Adam optimizer for 2000 iterations,
and relative L2 errors between the exact and the predicted solutions for different Ns

are shown in Figure 9.

18 X. Feng, Y. Qian and W. Shen

5 10 20 50
Ns

10 2

2 × 10 2

Re
la

tiv
e

L2 e
rro

r

Figure 9: 1D hypersingular integral equation. Relative L2 errors for different Ns.

4.2.2. 2D example

Consider the following PDE involving hypersingular integral

−∆u+

∫∫
==

Ω

u(x1, x2)

r3
dx1dx2 = f(x1, x2), x ∈ Ω,

u = g, x ∈ ∂Ω,

(4.5)

where Ω = {(x1, x2)|x2
1 + x2

2 ≤ 1}. The exact solution is given by

u(x1, x2) = sin(πx1) sin(πx2) + exp(x1 + 2x2),

f and g can be calculated via classical numerical approach. We approximate the above
hypersingular integral via

∫∫
==

Ω

u(x1, x2)

r3
dx1dx2 ≈

2π

Ns

Ns∑
i=1

[
−ũNN (0, νi; θ) + (1− ti)

∂2ũNN
∂r2

(tiri, νi; θ)

]
,

where νi ∼ U [0, 2π], ti, ri ∼ U [0, 1] and ũNN (r, ν) = uNN (r cos ν, r sin ν). And θ is
learnable parameters. We train the MC-Nonlocal-PINNs using the Adam optimizer for
40000 iterations. The final result is shown in Figure 10.

MC-Nonlocal-PINNs 19

500 1000 2000 4000
Ns

10 2

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Re
la

tiv
e

L2 e
rro

r

Figure 10: 2D hypersingular integral equation. Relative L2 errors for different Ns.

4.3. Nonlocal PDEs

4.3.1. 1D example

Consider a one-dimensional nonlocal problem −Lδu = fδ on (0, 1) and the nonlocal
operator is given by

Lδu = 2

∫ δ

−δ
γδ(s)(u(x+ s)− u(x))ds.

We mainly consider two cases: bound and singular kernel functions.

Case 1 (bounded kernel). A special kernel is chosen to be γδ(s) = δ−2|s|−1 in our
numerical examples [33]. The exact solution is given by

u(x) = x2(1− x2), f(x) = 12x2 − 2 + δ2.

And volume constraint is:

u(x) = x2(1− x2) x ∈ (−δ, 0) ∪ (1, 1 + δ).

For all x ∈ (0, 1), we can rewrite Lδ as follows:

Lδu(x) = 2

∫ δ

0
δ−2u(x+ s) + u(x− s)− 2u(x)

s
ds ≈ 1

Ns

Ns∑
i=1

u(x+ δri) + u(x− δri)− 2u(x)

ri
,

where ri ∼ U [0, 1]. The final result is shown in Figure 11. We first fix sample number
Ns to be 80 and can observe that as the nonlocal radius δ decreases, the gap between
our predicted solution and the reference becomes narrower. With fixed nonlocal radius
δ = 1/32, relative L2 error decreases as sample number (Ns) increases.

20 X. Feng, Y. Qian and W. Shen

1/8 1/16 1/32

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Re
la

tiv
e

L2 e
rro

r

5 10 20 40 80 160
sample number

10 3

10 2

Re
la

tiv
e

L2 e
rro

r

Figure 11: 1D bounded kernel nonlocal problem. Relative L2 error with different δ and Ns. Left : fixed
sample number Ns = 80. Right : fixed nonlocal radius δ = 1/32.

Case 2 (singular kernel). Another special kernel is chosen to be γ(s) = 1
4δ
−1/2|s|−5/2

[34]. Our benchmark problem is chosen to have u(x) = −x2(1−x)2 as the exact solution.
The corresponding right-hand side f(x) = 12x2 − 12x+ 2 + 2

5δ
2, and

u(x) = −x2(1− x)2 x ∈ (−δ, 0) ∪ (1, 1 + δ).

Similarly, we rewrite Lδ as follows:

Lδu(x) =
1

2
√
δ

∫ δ

0
s−1/2u(x+ s)− 2u(x) + u(x− s)

s2
ds

≈ 1

Ns

Ns∑
i=1

u(x+ δri)− 2u(x) + u(x− δri)
δ2r2

i

,

where ri ∼ Beta(0.5, 1). The final result is shown in Figure 12. We first fix sample
number Ns to 2 and can observe that as the nonlocal radius δ decreases, the gap between
our predicted solution and the reference becomes narrower. With fixed nonlocal radius
δ = 0.2, relative L2 errors decrease as sample number (Ns) increases.

0.2 0.1 0.05 0.025 0.0125
10 3

10 2

Re
la

tiv
e

L2 e
rro

r

2 5 10 20
sample number

10 3

10 2

Re
la

tiv
e

L2 e
rro

r

Figure 12: 1D singular kernel nonlocal problem. Relative L2 error with different δ and Ns. Left : fixed
sample number Ns = 2. Right : fixed nonlocal radius δ = 0.2.

4.3.2. High dimensional example

In this example, we consider a four dimensional nonlocal problem with Dirichlet bound-
ary condition:

MC-Nonlocal-PINNs 21


∫
B(x,δ)

u(x)− u(y)

‖x− y‖d+α
2

dy = f(x), in Ω,

u(x) = g(x), in Ωδ.

(4.6)

The fabricated solution is

u(x) = (1− ‖x‖22)α/2, x ∈ Ω = B4
1 =

{
x | ‖x‖2 ≤ 1, x ∈ R4

}
, (4.7)

the corresponding force term f(x) can be calculated via classical numerical approach.
Here we take homogeneous nonlocal boundary condition, that is, g(x) = 0. We set δ =
0.2, α = 0.5. We use ReLU as activation function and approximate u(x) with uNN (x) =
ReLU(1 − ‖x‖2)ũNN (x) to exactly satisfy non-zero volume boundary condition, and
train the MC-Nonlocal-PINNs using the Adam optimizer for 40000 iterations with
batch size 128. To illustrate final result, we select one plane [x1, x2, 0.2, 0.2]. The
Figure 13 shows the comparison between predicted and exact solutions. The relative
L2 error is 6.85e-3, which is sufficiently low for the high dimensional problem.

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Predicted

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Exact

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Absolute error

0.002

0.004

0.006

0.008

0.010

Figure 13: High dimensional nonlocal problem. From left to right: predicted solution, exact solution and
absolute error.

5. Summary

We have proposed MC-Nonlocal-PINNs for solving general nonlocal models such as
volterra-type, hypersingular integral equations and nonlocal PDEs. Our MC-Nonlocal-
PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable
approach for high dimensional problems. Applications to hypersingular integral equa-
tions, high dimensional Volterra type integral equations and nonlocal PDEs demon-
strate the effectiveness of our approach.

Despite the encouraging results presented here, some integral equations still require
further investigation such as highly oscillatory kernels arsing in electromagnetics, inte-
gration on manifolds and complex domains. We believe that addressing these problems
will provide a better understanding of the MC-Nonlocal-PINNs approach.

22 X. Feng, Y. Qian and W. Shen

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China
(NSFC: 11971259).

References

[1] L. Guo, H. Wu, X. Yu and T. Zhou, Monte Carlo fPINNs: Deep learning method
for forward and inverse problems involving high dimensional fractional partial differential
equations. Comput. Methods in Appl. Mech. Eng., 400: 115523, 2022.

[2] W. E, Machine learning and computational mathematics. arXiv preprint
arXiv:2009.14596, 2020.

[3] L. Lu, X. Meng, Z. Mao and G. E. Karniadakis, DeepXDE: A deep learning library
for solving differential equations. SIAM Rev., 63(1): 208-228, 2021.

[4] W. E and B. Yu, The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm
for Solving Variational Problems. Commun. Math. Stat., 6: 1-12, 2018.

[5] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial
differential equations. J. Comput. Phys., 375: 1339-1364, 2018.

[6] M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys., 378: 686-707, 2019.

[7] M. Raissi, A. Yazdani and G. E. Karniadakis, Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481): 1026-1030, 2020.

[8] S. Brunton, B. Noack and P. Koumoutsakos, Machine learning for fluid mechanics.
Annu. Rev. Fluid Mech., 52: 477-508, 2020.

[9] J. Han, A. Jentzen and W. E, Solving high-dimensional partial differential equations
using deep learning. Proc. Natl. Acad. Sci. U.S.A., 115(34): 8505-8510 2018.

[10] Y. Zang, G. Bao, X. Ye and H. Zhou, Weak adversarial networks for high-dimensional
partial differential equations. J. Comput. Phys., 411: 109409, 2020.

[11] J. Huang, H. Wang and T. Zhou, An Augmented lagrangian deep learning method
for variational problems with essential boundary conditions. Commu. Comput. Phys., 32:
401-423, 2021.

[12] L. Yang, X. Meng and G. E. Karniadakis, B-PINNs: Bayesian physics-informed
neural networks for forward and inverse pde problems with noisy data. J. Comput. Phys.,
425: 109913, 2021.

[13] T. Qin, Z. Chen, J. D. Jakeman and D. Xiu, Deep learning of parameterized equations
with applications to uncertainty quantification. Int. J. Uncertain. Quantif., 11(2): 63-82,
2021.

[14] L. Zhang, J. Han, H. Wang, R. Car and W. E, Deep potential molecular dynamics:
a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120(14):
143001, 2018.

[15] R. Iten, T. Metger, H. Wilming, L. Del Rio and R. Renner, Discovering physical
concepts with neural networks. Phys. Rev. Lett., 124(1): 010508, 2020.

[16] X. Meng and G. E. Karniadakis, A composite neural network that learns from multi-
fidelity data: Application to function approximation and inverse PDE problems. J. Com-
put. Phys., 401: 109020, 2020.

http://arxiv.org/abs/2009.14596

MC-Nonlocal-PINNs 23

[17] L. Guo, H. Wu and T. Zhou, Normalizing field flows: Solving forward and inverse
stochastic differential equations using physics-informed flow models. J. Comput. Phys.,
461: 1112022, 2022.

[18] G. Pang, L. Lu and G. E. Karniadakis, fPINNs: Fractional physics-informed neural
networks. SIAM J. Sci. Comput., 41(4): A2603–A2626, 2019.

[19] G. Pang, M. D’Elia, M. Parks and G. E. Karniadakis, nPINNs: nonlocal Physics-
Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Al-
gorithms and Applications. J. Comput. Phys., 22: 109760, 2020.

[20] L. Yuan, Y. Ni, X. Deng and S. Hao, A-PINN: Auxiliary physics informed neural
networks for forward and inverse problems of nonlinear integro-differential equations. J.
Comput. Phys., 462: 111260, 2022.

[21] N. Apreutesei, A. Ducrot and V. Volpert, Travelling waves for integro-differential
equations in population dynamics. Discrete Contin. Dyn. Syst. - B., 11(3): 541, 2009.

[22] D. Colton and R. Kress, Integral equation methods in scattering theory. SIAM, 2013.
[23] X. Antoine and M. Darbas, An introduction to operator preconditioning for the fast

iterative integral equation solution of time-harmonic scattering problems. Multiscale Sci.
Eng., 3(1): 1-35, 2021.

[24] S. Meleshko, Y. Grigoriev, N. Ibragimov and V. Kovalev, Symmetries of integro-
differential equations: with applications in mechanics and plasma physics. Springer Science
& Business Media, 2010.

[25] J. De Klerk, Hypersingular integral equationspast, present, future. Nonlinear Anal.
Theory Methods Appl., 63(5-7):e533-e540, 2005.

[26] J. Wu, Y. Wang, W. Li and W. Sun, Toeplitz-type approximations to the hadamard
integral operator and their applications to electromagnetic cavity problems. Appl. Numer.
Math., 58(2): 101-121, 2008.

[27] B. Li and W. Sun, Newton–cotes rules for hadamard finite-part integrals on an interval.
IMA J. Numer. Anal., 30(4): 1235-1255, 2010.

[28] S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J.
Mech. Phys. Solids., 48(1): 175-209, 2000.

[29] S. Silling and F. Bobaru,, Peridynamic modeling of membranes and fibers. Int. J.
Non-Linear Mech., 40(2-3): 395-409, 2005.

[30] Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation
of nonlocal diffusion problems with volume constraints. SIAM Rev., 54(4): 667-696, 2012.

[31] M. D’Elia, Q. Du, M. Gunzburger and R. Lehoucq, Nonlocal convection-diffusion
problems on bounded domains and finite-range jump processes. Comput. Appl. Math.,
17(4): 707-722, 2017.

[32] M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian and Z. Zhou, Numerical
methods for nonlocal and fractional models. Acta Numer., 29: 1-124, 2020.

[33] X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal
diffusion and linear peridynamic equations. SIAM J. Numer. Anal., 51(6): 3458-3482,
2013.

[34] X. Tian and Q. Du, Nonconforming discontinuous galerkin methods for nonlocal varia-
tional problems. SIAM J. Numer. Anal., 53(2): 762-781, 2015.

	1 Introduction
	2 Preliminaries
	2.1 Physics-informed neural network
	2.2 MC-fPINNs

	3 MC-Nonlocal-PINNs
	3.1 Volterra type equations
	3.2 Hypersingular integral equations
	3.3 Nonlocal PDEs
	3.4 Monte Carlo sampling for nonlocal operators
	3.5 MC-Nonlocal-PINNs

	4 Numerical experiments
	4.1 Volterra integral equation
	4.1.1 1D bounded kernel problem
	4.1.2 1D weakly singular kernel problem
	4.1.3 1D Fredholm problem
	4.1.4 High dimensional bounded kernel problem
	4.1.5 High dimensional singular kernel problem

	4.2 Hypersingular integral equations
	4.2.1 1D example
	4.2.2 2D example

	4.3 Nonlocal PDEs
	4.3.1 1D example
	4.3.2 High dimensional example

	5 Summary

