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Abstract

In this work, we present a hybrid numerical method for solving evolution partial differential equations
(PDEs) by merging the time finite element method with deep neural networks. In contrast to the conven-
tional deep learning-based formulation where the neural network is defined on a spatiotemporal domain,
our methodology utilizes finite element basis functions in the time direction where the space-dependent co-
efficients are defined as the output of a neural network. We then apply the Galerkin or collocation projection
in the time direction to obtain a system of PDEs for the space-dependent coefficients which is approximated
in the framework of PINN. The advantages of such a hybrid formulation are twofold: statistical errors are
avoided for the integral in the time direction, and the neural network’s output can be regarded as a set
of reduced spatial basis functions. To further alleviate the difficulties from high dimensionality and low
regularity, we have developed an adaptive sampling strategy that refines the training set. More specifically,
we use an explicit density model to approximate the distribution induced by the PDE residual and then aug-
ment the training set with new time-dependent random samples given by the learned density model. The
effectiveness and efficiency of our proposed method have been demonstrated through a series of numerical
experiments.

Keywords: Evolution equation, Finite element method, Deep learning, Adaptive sampling method

1. Introduction

Evolution equations, including both time-dependent ordinary and partial differential equations (ODEs
/ PDEs), are used Many numerical approaches have been developed for such problems, e.g. the finite
difference method, the spectral method, and the finite element method. Recently solving PDEs with deep
learning methods has been receiving increasing attention [1, 2, 3]. Typical techniques include physics-
informed neural networks (PINNs) [4], the deep Ritz methods [5], the weak adversarial networks [6], etc.
Although deep learning-based approaches have shown a lot of potential in solving high-dimensional PDEs,
there still exist many numerical issues in adapting the neural network approximation to the problem studied.

1.1. Related work
In this work, we pay particular attention to the error of PINNs for evolution equations which may grow

too fast and limit the application of PINNs in long-term integration. Many efforts have been made to address
this issue. We now briefly review the relevant works.

Improved PINNs: PINNs represent the approximate PDE solution as a single neural network, which
takes a space-time tuple as input and is trained by minimizing the PDE residual on random collocation
points in the space-time domain. To improve the performance of PINNs on long-term integration, many
approaches have been developed which mainly focus on seeking a more effective training strategy. In [7, 8],
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a marching-in-time strategy is proposed by splitting the time domain into many small segments, where the
training is done segment by segment and the approximate solution at the end of one segment is used as
the initial condition for the next segment. In [9], backward-compatibility PINNs (bc-PINNs) are proposed,
where the obtained solution in previous time segments is used as a constraint for the model training in the
current time segment. In [10], Causal PINNs are developed to incorporate causality into the training process
by introducing causality weights. In [11], a unified scalable framework for causal sweeping strategies is
developed.

Evolution deep neural networks (EDNNs): EDNNs [12, 13] are formulated with the Dirac-Frenkel
variational principle to train networks by minimizing the residual sequentially in time, where the model
parameters are time-dependent rather than global in the whole space-time domain. Traditional time-
marching methods can be used to update the model parameters. Compared to PINNs, the training of
EDNNs is more expensive while it is more flexible to adapt EDNNs to constraints such as Hamiltonian
conservation [14]. The efficiency of EDNNs is improved in [15] by making a part of model parameters
time-dependent and in [16] by updating randomized sparse subsets of model parameters at each time step.

Operator learning: The main idea is to learn an operator that maps the solution from the current time
step to the next time step. For example, physics-informed DeepONet [17, 18] can be used to learn a solution
operator over a short time interval t ∈ [0,∆t]. Starting with n = 2, the model’s prediction at n∆t can be
obtained from the trained model using the approximate solution at (n − 1)∆t as the input. Other examples
include auto-regressive networks [19], transformer [20], etc.

Hybrid strategies: These approaches try to hybridize classical numerical methods with deep learning
techniques by either adapting neural networks to augment classical PDE solvers [21, 22] or adapting classical
numerical approaches to improve the performance of PINNs [23]. For example, in [23], a coupled automatic
and numerical differentiation approach is proposed to take advantage of the regularization induced by
numerical discretization. In [24], a deep adaptive basis Galerkin approach is proposed where the orthogonal
polynomial expansion is employed in time direction and the expansion coefficients are modeled as the
output of a deep neural network.

1.2. Our contribution
The main contributions of this work are summarized as follows:

• We have developed a hybrid numerical method by merging the time finite element method with deep
neural networks. The approximate solution is a linear combination of the time finite element basis
functions, where the coefficients are given by the output of a neural network. We subsequently apply
Galerkin or collocation projection to eliminate the time and use PINN to approximate the system
of PDEs for the coefficients. This strategy has some advantages: First, the numerical difficulties
induced by random sampling and causality are avoided in the time direction since the projection
can be done accurately. Second, all the coefficients define a set of reduced basis functions on the
computation domain, which are learned through the neural network. The approximate solution can
also be regarded as a time-dependent linear combination of these reduced basis functions, which shares
similarities with the low-rank representation in the study of high-dimensional problems.

• We have proposed a deep adaptive sampling strategy to enhance the numerical efficiency. Mesh
refinement in the time direction is straightforward. Particular attention needs to be paid to the random
sampling in the physical space, especially for high-dimensional and low-regularity problems. Using
a spatially conditional bounded KRnet and a discrete distribution in the time direction, we have
constructed a joint density model to learn the distribution induced by the PDE residual, based on
which new time-dependent samples are generated to refine the training set.

The remainder of the paper is organized as follows. In Section 2, we provide an overview of PINN. Then we
briefly introduce the existing work in solving evolution PDEs and review classic finite element methods for
the first-order ordinary differential equations, including Galerkin and collocation frameworks. In Section
3, we introduce a hybrid FEM-PINN method and also develop some adaptive sampling strategies. Several
numerical examples are demonstrated in Section 4 to test the performance of the proposed method. The
paper is concluded in Section 5.
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2. Preliminaries

2.1. Physics-informed neural networks (PINNs)
We begin with a brief overview of physics-informed neural networks (PINNs). We consider a general

time-dependent PDE
ut(x, t) +N[u](x, t) = f (x, t), x ∈ Ω ⊂ Rd, t ∈ [0,T], (1)

subject to the initial and boundary conditions

u(x, 0) = g(x), x ∈ Ω,

B[u](x, t) = b(x, t), x ∈ ∂Ω, t ∈ [0,T],
(2)

where N[·] is a linear or nonlinear differential operator, and B[·] is a boundary operator corresponding to
Dirichlet, Neumann, Robin or periodic boundary conditions.

Following the original work of Raissi et al. [4], we represent the unknown solution u(x, t) with a
deep neural network uθ(x, t), where θ denotes all tunable parameters (e.g. weights and biases). Then, a
physics-informed model can be trained by minimizing the following composite loss function

L(θ) = λicLic(θ) + λbcLbc(θ) + λrLr(θ), (3)

where

Lic(θ) =
1

Nic

Nic∑
i=1

∣∣∣uθ(xi
ic, 0) − g(xi

ic)
∣∣∣2 ,

Lbc(θ) =
1

Nbc

Nbc∑
i=1

∣∣∣B[uθ](xi
bc, t

i
bc) − b(xi

bc, t
i
bc)
∣∣∣2 ,

Lr(θ) =
1

Nr

Nr∑
i=1

∣∣∣∣∣∂uθ
∂t

(xi
r, t

i
r) +N[uθ](xi

r, t
i
r) − f (xi

r, t
i
r)
∣∣∣∣∣2 .

(4)

Here {xi
ic}

Nic
i=1, {ti

bc,x
i
bc}

Nbc
i=1 and {ti

r,x
i
r}

Nr
i=1 can be the vertices of a fixed mesh or points that are randomly sampled

at each iteration of a gradient descent algorithm. The gradients with respect to both the input variables (t,x)
and the model parameters θ can be efficiently computed via automatic differentiation [25]. Moreover, the
hyper-parameters {λic, λbc, λr} allow the flexibility of assigning a varying learning rate to each loss term to
balance their interplay during the training process, which may be user-specified or tuned automatically.

2.2. Continuous time finite element method
Evolution PDEs are often approximated by spatial finite elements together with a sequential time-

marching scheme. Another choice is to construct a finite element approximation space on the space-time
domain. We briefly review the time finite element method for first-order ordinary differential equations.
Consider the following model problem:

u′(t) +N[u](t) = f (t), t ∈ [0,T],
u(0) = 0,

(5)

whereN is a linear or nonlinear operator and f (t) ∈ L2(I) with I = [0,T].

2.2.1. Galerkin projection
We let X B {u ∈ H1(I) : u(0) = 0} be the trial space and Y B L2(I) the test space. The primal variational

formulation of (5) is as follows. {
Find u ∈ X such that
(u′, v) + (N[u], v) = ( f , v), ∀v ∈ Y,

(6)
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where (·, ·) indicates the inner product of two functions. For approximation, we consider the Galerkin
projection with XN ⊂ X and YN ⊂ Y, i.e.,{

Find uN ∈ YN such that
(u′N, vN) + (N[uN], vN) = ( f , vN), ∀vN ∈ YN.

(7)

Define
XN = span{ϕ j(t)|0 ≤ j ≤ N}, YN = span{ψ j(t)|0 ≤ j ≤ N}, (8)

where ϕ j(t) and ψ j(t) are finite element basis functions. Let

uN(t) =
N∑

i=0

ũiϕi(t) ∈ XN (9)

be the approximate solution with undetermined coefficients ũi. Taking vN = ψ j for j = 0, · · · ,N in (7) leads
to the following system

N∑
i=0

(
∂tϕi(t), ψ j(t)

)
ũi +
(
N

[ N∑
i=0

ϕi(t)ũi

]
, ψ j(t)

)
= ( f (t), ψ j(t)), ∀ j = 0, 1, · · · ,N. (10)

The inner products in (10) can be accurately evaluated with the Gaussian quadrature formulas, where the
degree of exactness is determined by the nonlinearilty ofN .

2.2.2. Collocation projection
Collocation projection provides a flexible strategy especially when N is nonlinear [26, 27].Let {sk}

K
k=1 be

Gaussian-type quadrature points on the reference interval [0, 1]

0 ≤ s1 < s2 < · · · < sK ≤ 1. (11)

Consider a partition of [0,T] with

0 = t0 < t1 < · · · < tM̂ = T, hi = ti − ti−1, i = 1, · · · , M̂. (12)

Define
sm,k = tm−1 + hmsk, 1 ≤ k ≤ K, 1 ≤ m ≤ M̂. (13)

We seek the approximate solution by enforcing the equation on the collocation points, i.e.,Find u ∈ XN ∩ C1(I) such that

∂tu(s) +N[u](s) = f (s), s ∈ ∪M̂
m=1{sm,k}

K
k=1,

(14)

where XN ∩ C1(I) defines a finite element approximation space with C1 elements and N + 1 is equal to the
total number of collocation points. It is shown in [28] by selecting the collocation points carefully collocation
projection yields the same order of accuracy as Galerkin projection. Typical piecewise polynomials with at
least C1 regularity include piecewise cubic Hermite polynomials and cubic spline functions.

3. Methodology

Now we are ready to present our approach for evolution equations (1). We aim to seek an approximate
solution of the following form

uN(x, t;θ) =
N∑

i=0

ωi(x;θ)ϕi(t), (15)

where {ϕi(t)}i is a pre-specified set of time finite element basis functions, ωi : Rd
→ R are modeled by

the output of a neural network ω(x, θ) : Rd
→ RN+1, and θ includes all tunable model parameters. More

4



precisely, ω(x, θ) is a fully-connected neural network defined as

ω(x;θ) B aThL−1 ◦ hL−2 ◦ · · · ◦ h1(x) for x ∈ Rd, (16)

where L ∈ N+, a ∈ RML−1×(N+1), hℓ(xℓ) B σ(Wℓxℓ + bℓ) with Wℓ ∈ RMℓ×Mℓ−1 (M0 B d) and bℓ ∈ RMℓ for
ℓ = 1, 2, · · · ,L − 1. Then θ B {a,Wℓ, bℓ : 1 ≤ ℓ ≤ L − 1}. σ(x) is an activation function which acts on x
componentwisely to return a vector of the same size as x. We let Mℓ = M be a fixed number for all ℓ and
FL,M the set consisting of all ω with depth L and width M.

3.1. A hybrid FEM-PINN method
We consider the following hypothesis space

UN B

uN(x, t;θ) =
N∑

i=0

ωi(x;θ)ϕi(t), ω = (ω0, · · · , ωN) ∈ FL,M

 . (17)

The Galerkin projection along the time direction yields that Find uN ∈ UN such that

(∂tuN(x, ·), vN) + (N[uN](x, ·), vN) = ( f (x, ·), vN) ∀vN ∈ span{ψ j(t)|0 ≤ j ≤ N}, ∀x ∈ Ω.
(18)

where (·, ·) indicates the inner product of two functions with respect to time. More specifically, we have

N∑
i=0

(
∂tϕi(t), ψ j(t)

)
ωi(x;θ) +

(
N

[ N∑
i=0

ϕi(t)ωi(x;θ)
]
, ψ j(t)

)
= ( f (x, t), ψ j(t)), ∀ j = 0, 1, · · · ,N, ∀x ∈ Ω. (19)

IfN is linear with respect to ω and time-independent, the above system can be further simplified as follows:

N∑
i=0

(
∂tϕi(t), ψ j(t)

)
ωi(x;θ) +

N∑
i=0

(
ϕi(t), ψ j(t)

)
N(ωi(x;θ)) = ( f (x, t), ψ j(t)), ∀ j = 0, 1, · · · ,N. (20)

Now let us turn to the collocation projection along the time direction. Let St = ∪
M̂
m=1{sm,k}

K
k=1, where sm,k is

defined in equation (13). The collocation formulation can be written as{
Find uN ∈ UN such that
∂tuN(x, s;θ) +N[uN](x, s;θ) = f (x, s),∀s ∈ St,∀x ∈ Ω.

(21)

More specifically,

N∑
i=0

∂tϕi(s)ωi(x;θ) +N

 N∑
i=0

ϕi(s)ωi(x;θ)

 = f (x, s), ∀s ∈ St, ∀x ∈ Ω. (22)

Remark 3.1. The Galerkin and collocation projections yield respectively two systems of PDEs for ωi(x;θ). Due to
the hybrid form of uN(x, t;θ), all integrals for the Galerkin projection in the time direction can be done accurately
by Gaussian quadrature formulas. Since the temporal basis functions are polynomials, collocation projection is also
effective [28]. We then mainly focus on the integration in the physical space.

We subsequently approximate the PDE systems (19) and (22) in the framework of PINNs. More specifi-
cally, we consider the following minimization problem

min
θ
L(θ) = Lr(θ) + γ1Lic(θ) + γ2Lbc(θ), (23)

where
Lic(θ) = ∥u(x, 0;θ) − g(x)∥2L2(Ω), Lbc(θ) = ∥B[u](x, t;θ) − b(x, t)∥2L2(∂Ω×[0,T]), (24)
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with 0 < γ1, γ2 < ∞ being penalty parameters. For system (19), we define

Lr(θ) =
N∑

j=0

L
g
r, j(θ),

L
g
r, j(θ) =

∥∥∥∥∥∥∥
N∑

i=0

(
∂tϕi(t), ψ j(t)

)
ωi(x;θ) +

(
N

[ N∑
i=0

ϕi(t)ωi(x;θ)
]
, ψ j(t)

)
− ( f (x, t), ψ j(t))

∥∥∥∥∥∥∥
2

L2(Ω)

=
∥∥∥∥rg

j (x;θ)
∥∥∥∥2

L2(Ω)
.

(25)
For system (22), we define

Lr(θ) =
|St |∑
j=1

L
c
r, j(θ),

L
c
r, j(θ) =

∥∥∥∥∥∥∥
N∑

i=0

∂tϕi(s j)ωi(x;θ) +N

 N∑
i=0

ωi(x;θ)ϕi(s j)

 − f (x, s j)

∥∥∥∥∥∥∥
2

L2(Ω)

=
∥∥∥∥rc

j(x;θ)
∥∥∥∥2

L2(Ω)
,

(26)

where we order all collocation points in St as s j with j = 1, . . . , |St|.
We note that |St| ≥ (N + 1) in general since there are N + 1 time finite element basis functions. For

simplicity, we let |St| = N + 1 and consider the following form

Lr(θ) =
N∑

j=0

Lr, j(θ), Lr, j(θ) =
∥∥∥r j(x;θ)

∥∥∥2
L2(Ω)

, (27)

which are shared by both the Galerkin and collocation projections, i.e., r j = rg
j or rc

j. The loss functional (23)
is usually discretized numerically before the optimization with respect to θ is addressed. In practice, one

often chooses uniformly distributed collocation points Sr = {Sr, j}
N
j=0 =

{
{x

(i)
r, j}

Nr, j

i=1

}N
j=0

, Sic = {x
(i)
ic }

Nic
i=1 on Ω and

Sbc =
{
(x(i)

bc , t
(i)
bc )
}Nbc

i=1
on ∂Ω × [0,T] for the discretization of the three terms in the objective functional (23),

leading to the following empirical loss

L̂(θ) =
N∑

j=0

∥r j(x;θ)∥2Nr, j
+ γ̂1∥B[u](x, t;θ) − b(x, t)∥2Nic

+ γ̂2∥u(x, 0;θ) − g(x)∥2Nbc
, (28)

where 0 < γ̂1, γ̂2 < ∞, and

∥u(x)∥Nr, j =

 1
Nr, j

Nr, j∑
i=1

u2(x(i)
r, j)


1
2

, ∥u(x, 0)∥Nic =

 1
Nic

Nic∑
i=1

u2(x(i)
ic , 0)


1
2

, ∥u(x, t)∥Nbc =

 1
Nbc

Nbc∑
i=1

u2(x(i)
bc , t

(i)
bc )


1
2

. (29)

We then seek an estimator θ̂ by minimizing the empirical loss (28) via stochastic gradient descent methods,
i.e.,

θ̂ = arg min
θ

L̂(θ). (30)

As suggested by [7, 8, 9], we can also employ a time-marching strategy to reduce optimization difficulties.
Specifically, we partition the temporal domain [0,T] into sub-domains [0,∆t], [∆t, 2∆t], · · · , [T−∆t,T]. Neural
networks are then trained on each sub-domain successively with the initial conditions given by the same
model trained on previous sub-domains. The schematic of the proposed approach is shown in Figure 1, and
the corresponding algorithm is summarized as follows.
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Figure 1: Schematic of the proposed approach.

Algorithm 1 Solving time-dependent PDEs via a hybrid FEM-PINN method

Input: terminal time T, number of segment Nsegment, number of basis function N, number of epoch Ne,
training data Sr = ∪

N
j=0Sr, j = ∪

N
j=0{x

(i)
r, j}

Nr, j

i=1 , Sic = {x
(i)
ic }

Nic
i=1 and Sbc = {(x

(i)
bc , t

(i)
bc )}Nbc

i=1, initial learning rate lr, decay
rate η, step size ns
for k = 1, · · · ,Nsegment do

Construct N + 1 local finite element basis functions in the interval [(k − 1)T/Nsegment, kT/Nsegment].
for j = 1, · · · ,Ne do

Divide {Sr, j}
N
j=0, Sic and Sbc into nr,nic,nbc mini-batches {Sib

r, j}
N
j=0,S

ib
ic ,S

ib
bc randomly, respectively.

for ib = 1, · · · ,n do
if ((k − 1)Ne + j)%ns == 0 then

lr = η ∗ lr.
end if
Compute the loss function L̂(θ) (28) for mini-batch data {Sib

r, j}
N
j=0,S

ib
ic and Sib

bc.
Update θ by using the Adam optimizer.

end for
end for
Compute the prediction for new initial training data set {x(i)

ic , t
(i)
ic }

Nic
i=1, where t(i)

ic = KT/Nsegment.
Update the above prediction values as g(x(i)

ic ).
Update the corresponding initial and boundary training data Sic,Sbc.
Save the parameter θ as θk.

end for
Output: The predicted solutions {u(x, tk;θk)}Nsegment

k=1 , where tk ∈ [(k − 1)T/Nsegment, kT/Nsegment], k =
1, · · · ,Nsegment.

3.1.1. Some remarks on the hybrid form
PINN is formulated as a least-square method in terms of the hypothesis space given by the neural

network. The error of uN(x, t; θ̂) satisfies

E∥uexact(x, t) − uN(x, t; θ̂)∥ ≤ ∥uexact(x, t) − uN(x, t;θ∗)∥ + E∥uN(x, t;θ∗) − uN(x, t; θ̂)∥ (31)

for a proper norm, where θ∗ is the minimizer of L(θ), θ̂ is the minimizer of L̂(θ) and the expectation E[·] is
with respect to random samples. On the right-hand side, the first term is the approximation error determined
by the hypothesis space and the second term is the statistical error introduced by the random samples.

It is well known that PINN may fail to predict convection when the frequency is large although the
hypothesis space is capable of yielding a good approximate solution [8]. According to the inequality (31),
the reason is twofold: the non-convex structure of the loss landscape and the statistical error. First, the
best approximation may not be obtained due to non-convexity of the loss function even the statistical error
is zero. The change of the loss landscape can be achieved by adding a regularization term. For example,
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bc-PINNs have a penalty term to force the model to remember what was learned before [9]. Second, the
available strategies that improve the performance of PINNs for time integration can be understood through
the reduction of statistical error. Assume that Nt random samples are used in the time direction. The most
straightforward strategy is to divide the time interval as [0,T] = ∪n−1

i=0 [i∆T, (i+1)∆T] with ∆T = T/n and train
the model sequentially in each time segment. After such a decomposition, the variation in time is reduced
implying that the Monte Carlo approximation of the loss given by the random samples is more accurate due
to variance reduction. The better the loss is discretized by random samples, the smaller the statistical error
is. Another strategy, called causal training, is proposed in [10]. A weighted residual loss function is defined
as

Lr(θ) =
1

Nt

Nt∑
i=1

λiLr(ti, θ),

where Lr(ti, θ) is the residual loss at t = ti, and

λi = exp

−ϵ i−1∑
j=1

Lr(t j, θ)

 , i = 2, 3, . . . ,Nt

with 0 < ϵ < ∞. The intuition is that the model will not be trained until the model is well trained for small
ti, which is consistent with the causality induced by evolution. Note that

1
Nt

Nt∑
i=1

λiLr(ti, θ) ≈
1
T

∫
t
λ(t)Lr(t, θ)dt

is the Monte Carlo approximation of a weighted loss with Nt uniform random samples. If λ(t) > 0 and the
exact solution is included in the hypothesis space, the same θ∗ will be reached. λ(t) is a decreasing function
by definition whileLr(t, θ) is in general an increasing function due to the accumulation of errors with time. If
λ(t) andLr(t, θ) are well balanced, their product varies much less in time, corresponding to a small variance
in terms of the uniform distribution. Such a balance is mainly achieved by the selection of the so-called
causality parameter ϵ. If ϵ fails to introduce a variance reduction for λ(t)Lr(t, θ), the statistical error will not
be reduced, implying that the training results may get worse. This explains the sensitivity of the training
strategy on ϵ.

Based on the above observations, we intend to use the hybrid form (15) to alleviate the difficulties induced
by the statistical errors in the time direction. We also note that the coefficients for the time finite element
basis functions are given by the outputs of a neural network, which corresponds to learning a set of reduced
basis functions in the physical space since the output layer of the neural network is a linear combination of
these basis functions.

3.2. Deep adaptive sampling method
Random samples are used for the integration in the physical space. To reduce the statistical errors, we

consider the adaptive sampling method [29, 30]. For simplicity, we only consider the interior residualLr(θ),
and the time interval is [0, 1]. As suggested in [29], we relax the objective function Lr(θ) as:

L̃r(θ) =
N∑

i=0

λiL̃r,i(θ) =
N∑

i=0

λi

∫
Ω

r2
i (x;θ)pi(x)dx ≈

1
Nr

N∑
i=0

Nr∑
j=1

λir2
i (x(i)

j ;θ), (32)

whereλi > 0,
∑N

i=0 λi = 1, the set {x(i)
j }

Nr
j=1 is generated with respect to the probability density function pi(x) > 0

instead of a uniform distribution. We associate L̃r,i(θ) with a weight λi. The minimizer of L̃r(θ) is also the
solution to the problem if the exact solution is included in the hypothesis space. To reduce the error induced
by the Monte Carlo approximation, we may adjust pi(x) to make the residuals r2

i (x;θ) nearly uniform. To
do this, we refine the training set gradually by adding new samples according to the distribution induced
by r2

i (x;θ(k)), where k indicates the adaptivity iteration and θ(k) is the optimal model parameter given by
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the previous training set. Once the training set is updated, the model will be retrained, based on which the
training set will be refined again. In a nutshell, the model and the training set are updated alternately.

The main problem is that we need to obtain new samples from N + 1 distributions induced by r2
i (x;θ(k)).

To handle this issue, we adopt a time-dependent density estimation strategy. Specifically, we augment the
spatial variable in different terms (L̃r,i) with an extra dimension s, and consider a set {si}

N
i=0 of grid points

on the time interval. For the Galerkin approach, si can be interpreted as pre-defined nodes of finite element
mesh; for the collocation approach, si can be viewed as a reordering of pre-defined Gaussian nodes sm,k (see
Section 2.2.2). We define a weighted empirical measure

δλ(A) =
N∑

i=0

λiδsi (A)

for any A ⊂ [0, 1] with δsi being the Dirac measure and let r(x, s;θ) be an interpolation function satisfying

r(x, s;θ) = ri(x;θ) if s = si, i = 0, · · · ,N. (33)

Let pX ,S(x, s) = pX |S(x|s)pS(s) be a joint PDF. Choosing pS(s)ds = δλ(ds). We have∫ ∫
Ω

r2(x, s;θ)pX ,S(x, s)dxds =
N∑

i=0

∫
Ω

r2
i (x;θ)pX |S(x|si)λidx, (34)

which is consistent with equation (32) if pX |S(x|si) = pi(x). Using pX ,S(x, s), the objective functional is
discretized as

L̃r(θ) ≈
1

Nr

Nr∑
i=1

r2(x(i), s(i);θ), (35)

where {(x(i), s(i))}Nr
i=1 are sampled from pX ,S(x, s). We will use a density model with the form pX |S(x|s)pS(s)

to approximate the distribution induced by r2(x, s;θ). New samples from the trained density model will be
added to the training set for refinement.

3.2.1. Model pS(s)
Without loss of generality, we assume that s ∈ [0, 1]. We aim to find a invertible transformation z = f (s)

such that
pS(s) = pZ( f (s))|det∇s f |, Z ∼ U[0, 1], (36)

where U denotes the uniform distribution. We use the bounded polynomial spline layer fpoly [31] to
parameterize f . Specifically, let 0 = l0 < l1 < · · · < lm−1 < lm = 1 be a given partition of the unit interval and
{k j}

m
j=0 be the corresponding weights satisfying

∑
j k j = 1. A piecewise linear polynomial can be defined as

follows:

p(s) =
k j+1 − k j

l j+1 − l j
(s − l j) + k j, ∀s ∈ [l j, l j+1]. (37)

Then the corresponding cumulative probability function fpoly admits the following formulation:

fpoly(s) =
k j+1 − k j

2(l j+1 − l j)
(s − l j)2 + k j(s − l j) +

j−1∑
i=0

ki + ki+1

2
(li+1 − li), ∀s ∈ [l j, l j+1]. (38)

To satisfy
∫ 1

0 p(s)ds = 1, we can model {k j}
m
j=0 as

k j =
exp
(
k̃ j

)
C

, ∀ j = 0, . . . ,m, (39)
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where θ f ,1 = {k̃ j}
m
j=0 are trainable parameters and C is a normalization constant:

C =
m−1∑
i=0

(exp
(
k̃i

)
+ exp

(
k̃i+1

)
)(li+1 − li)

2
. (40)

Notice that the polynomial spline layer fpoly(·;θ f ,1) (37)-(38) yields explicit monotonous expressions, and
its inverse can be readily computed. Then an explicit PDF model ppoly(s;θ f ,1) can be obtained by letting
f = fpoly, i.e.,

ppoly(s;θ f ,1) = pZ( fpoly(s))
∣∣∣det∇s fpoly

∣∣∣ . (41)

3.2.2. Model pX|S(x|s)
For x ∈ Rd, we seek a invertible transformation z = f (x, s) ∈ Rd for any given s such that

pX |S(x|s) = pZ |S(z|s)
∣∣∣∣∣∂ f (x, s)
∂x

∣∣∣∣∣ , Z |S ∼ U[−1, 1]d, ∀s. (42)

Here we employ conditional bounded KR-net fB−KRnet(·, s) [32] to parameterize f (·, s). The basic idea of con-
ditional bounded KRnet is to define the structure of f (x, s) in terms of the Knothe-Rosenblatt rearrangement.
The transformation f (·, s) inspired by the Knothe-Rosenblatt (K-R) rearrangement [33] has a low-triangular
structure

z = f (x, s) =



f1(x1, s)

f2(x1, x2, s)
...

fd(x1, · · · , xd, s)


. (43)

The sub-transformations f1, · · · , fd consist of polynomial spline layers and coupling layers [34]. More details
can be found in [32, 35]. Let fB−KRnet(·, s;θ f ,2) indicate the conditional invertible transport map induced by
bounded KR-net, where θ f ,2 includes the model parameters. Then an explicit PDF model pB−KRnet(x, s;θ f ,2)
can be obtained by letting f = fB−KRnet in equation (42)

pB−KRnet(x|s;θ f ,2) = pZ( fB−KRnet(x, s))
∣∣∣det∇x fB−KRnet

∣∣∣ . (44)

3.2.3. Adaptive sampling approach
Now we model a continuous joint density distribution pθ f (x, t)

pθ f (x, t) = ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2), (45)

where θ f = {θ f ,1, θ f ,2}. To seek the "optimal" parameter θ f , we can minimize the following objective

DKL(r̂θ(x, t)||pθ f (x, t)) = DKL

(
r̂θ(x, t)||ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2)

)
=

"
r̂θ(x, t) log (r̂θ(x, t)) dxdt −

"
r̂θ(x, t) log

(
ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2)

)
dxdt,

(46)
where DKL indicates the Kullback-Leibler (KL) divergence and r̂θ(x, t) ∝ r2(x, t;θ) is the induced measure
by continuous residual squared r2(x, t;θ)

r(x, t;θ) = ∂tuN(x, t;θ) −N[uN](x, t;θ) − f (x, t).

The first term on the right-hand side in (46) corresponds to the differential entropy of r̂θ(x, t), which does
not affect the optimization with respect to θ f . So minimizing the KL divergence is equivalent to minimizing
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the cross entropy between r̂θ(x, t) and pθ f (x, t)

H(r̂θ(x, t), pθ f (x, t)) = −
"

r̂θ(x, t) log
(
ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2)

)
dxdt, (47)

Since the samples from r̂θ(x, t) are not available, we approximate the cross entropy using the importance
sampling technique:

H(r̂θ(x, t), pθ f (x, t)) ≈ −
1

Nr

Nr∑
i=1

r̂θ(xi, ti)

ppoly(ti; θ̂ f ,1)pB−KRnet(xi|ti; θ̂ f ,2)

(
log ppoly(ti;θ f ,1) + log pB−KRnet(xi|ti;θ f ,2)

)
,

(48)
where

ti ∼ ppoly(·; θ̂ f ,1), xi ∼ pB−KRnet(·|ti; θ̂ f ,2). (49)

The choice of θ̂ f = {θ̂ f ,1, θ̂ f ,2}will be specified as follows.
Once obtaining the well-trained parameters θ∗f = {θ

∗

f ,1, θ
∗

f ,2}, one can refine initial training set via adding
new samples and update the weights in (32). Specifically, note that the residuals ri(x;θ) in (27) are only
needed at time si, we need to construct the corresponding discrete distributions. For system (19) in Galerkin
projection, we use the following discrete distribution

pdis(s) =


∫
Ω

r2
i (x;θ)dx∑N

i=0

∫
Ω

r2
i (x;θ)dx

, s = si, 0 ≤ i ≤ N

0, otherwise.
(50)

For system (22) in collocation projection, we simply use the following discrete distribution

pdis(s;θ∗f ,1) =



∫ (s0+s1)/2

0 ppoly(s;θ∗f ,1)ds, s = s0,∫ (si+si+1)/2

(si−1+si)/2
ppoly(s;θ∗f ,1)ds, s = si, 0 < i < N∫ 1

(sN−1+sN)/2 ppoly(s;θ∗f ,1)ds, s = sN,

0, otherwise.

(51)

Then the weights in (32) can be determined via the discrete distribution pdis(·;θ∗f ,1). For collocation projection,

it is straightforward to refine the training set. We first generate Nnew samples {t j}
Nnew
j=1 via the well-trained

model pdis(·;θ∗f ,1), then we generate the corresponding spatial samples x j ∼ pB−KRnet(·|t j;θ∗f ,2) for each t j.
After that we reorder newly generated data into the original spatial space

x j ∈ S(i)
r,new, if t j = si,∀i = 0, · · · ,N, j = 1, · · · ,Nnew. (52)

For Galerkin projection, recall that we need to use the same training set for the basis function with same
support (see (25)). Hence for each si in (50), one firstly identies its corresponding basis function and support,
here it is denoted as Ĩi. Then we generate spatial samples xi,k ∼ pB−KRnet(·|ti,k;θ∗f ,2), where ti,k are Gaussian

quadrature points in the interval Ĩi. The total number of generated spatial points for each si should be
proportional to the discrete weights pdis(si). Again, we recoder newly generated data into the original spatial
space

xi,k ∈ S(i)
r,new, ∀i = 0, · · · ,N. (53)

We are now ready to present our algorithms. Let {S(i)
r,0}

N
i=0,Sic and Sbc be three sets of collocation points

that are uniformly sampled from ΩN+1, Ω × {0} and ∂Ω × [0,T], respectively. Using {S(i)
r,0}

N
i=0,Sic and Sbc, we

minimize the empirical loss (28) to obtain u(x, t;θ∗,(1)). With u(x, t;θ∗,(1)), we minimize the cross entropy (48)
to get pθ∗,(1)

f
(x, t), where we use uniform samples for importance sampling. To refine the training set, a new
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set Sr,new = {S
(i)
r,new}

N
i=0 is generated according to the model pθ∗,(1)

f
(x, t), and new training set can be updated as

Sr,1 = Sr,0∪Sr,new. Then we continue to update the approximate solution u(x, t;θ∗,(1)) using Sr,1 as the training
set, which yields a refined model u(x, t;θ∗,(2)). Starting from k = 2, we seek pθ∗,k (x, t) using the previous
approach. We repeat the procedure to obtain an adaptive algorithm (see Algorithm 2).

Algorithm 2 Deep adaptive sampling method for time-dependent PDEs

Input: Initial pdis(t;θ
(0)
f ,1), pB−KRnet(x, t;θ

(0)
f ,2),u(x, t;θ), number of finite element basis N + 1, initial weights

λi =
1

N+1 , maximum epoch number Ne, number of maximum iteration Nadaptive, number of newly added
points Nnew, training data {S(i)

r,0}
N
i=0, Sic and Sbc.

for k = 0, · · · ,Nadaptive − 1 do
// Solve PDE
for j = 1, · · · ,Ne do

Divide {S(i)
r,k}

N
i=0, Sic and Sbc into nr,nic,nbc mini-batches {S(i),ib

r,k }
N
i=0,S

ib
ic ,S

ib
bc randomly, respectively.

for ib = 1, · · · ,n do
Compute the loss function L̂(θ) (35) for mini-batch data {S(i),ib

r,k }
N
i=0,S

ib
ic and Sib

bc.
Update θ by using the Adam optimizer.

end for
end for
// Train density model
for j = 1, · · · ,Ne do

Sample nr samples from {S(i),ib
r,k }

N
i=0

Update ppoly(t;θ(k)
f ,1) and pB−KRnet(x|t;θ

(k)
f ,2) by descending the stochastic gradient of

H(r̂θ(x, t), pθ(k)
f

(x, t)) (see equation (48))

end for
// Refine training set and update weights
Generate Nnew × (N + 1) samples {S(i)

r,new}
N
i=0, where t j ∼ pdis(·;θ

(k)
f ,1) and x j ∼ pB−KRnet(·|t j;θ

(k)
f ,2).

{S(i)
r,k+1}

N
i=0 = {S

(i)
r,k}

N
i=0 ∪ {S

(i)
r,new}

N
i=0.

end for
Output: The predicted solution u(x, t;θ∗).

4. Numerical experiments

In this section, we conduct some numerical experiments to demonstrate the effectiveness of the proposed
method, including one convection equation, one Allen-Cahn equation, one two-dimensional and low regu-
larity test problems, and two high-dimensional linear or nonlinear problems. Throughout all benchmarks,
we will employ the fully-connected neural network equipped with hyperbolic tangent activation functions
(Tanh) and initialized using the Glorot normal scheme [36]. All neural networks are trained via stochastic
gradient descent using the Adam optimizer with default settings [37] and an exponential learning rate decay
with a decay-rate of 0.9 every 1,000 training iterations. All experiments are implemented by JAX [38].

In order to test the validity of the method, we use the following relative L2 error:

errL2 =

√∑num
i=1 |u(xi, ti;θ) − u(xi, ti)|2√∑num

i=1 |u(xi, ti)|2
, (54)

where num represents the total number of test points chosen randomly in the domain, and u(xi, ti;θ) and
u(xi, ti) represent the predicted and the exact solution values, respectively.
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4.1. Convection equation
We start with a one-dimensional linear convection equation of the form

∂u
∂t
+ β

∂u
∂x
= 0, (x, t) ∈ [0, 2π] × [0, 1], (55)

subject to periodic boundary conditions and an initial condition u(0, x) = sin(x). The precise solutions for
varying values of β are depicted in Figure 2. One can observe that as β increases, the solution exhibits
increasingly pronounced temporal variations.
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Figure 2: Exact solutions. From left to right: β = 10, 30 and 50.

We initially evaluate the performance with linear finite element basis functions in Galerkin projection.
The latent coefficients, denoted asωi(x;θ), are represented using a fully-connected neural network with tanh
activation function, 4 hidden layers and 128 neurons per hidden layer. To simplify the training object, we
strictly impose the periodic boundary conditions by embedding the input coordinates into Fourier expansion
(see Appendix A). Notice that the above equation is linear, we use the linear form of loss function (20) and
set Nsegment = 1. We create a uniform mesh of size 400 in the spatial computational domain [0, 2π], yielding
400 initial points and 400 collocation points for enforcing the PDE residual. We proceed by training the
resulting model via full-batch gradient descent using the Adam optimizer for 40,000 iterations. As shown
in Figure 3, for fixed N, the relative L2 gradually increases as β increases; for fixed β = 50, the relative L2
exhibits linear convergence concerning the number of basis functions (N). Particularly, when β = 30, the
proposed method attains a remarkable relative L2 error of 2.85e − 3.
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Figure 3: Convection equation. Numerical results with linear finite element discretization.

Furthermore, we investigate the impact of linear and quadratic finite element basis functions on the
performance of the proposed model. Specifically, we set β to 50 and vary the number of mesh elements
N, ranging from 32 to 128. We then train the proposed model under same hyperparameter configurations.
Figure 4 and Table 1 present a summary of the relative L2 errors observed in the trained models. It is
not surprising that the error diminishes when we replace linear basis functions with quadratic ones, in
accordance with the classical results of finite element theory.
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Figure 4: Convection equation (β = 50). Linear finite element basis functions versus quadratic finite element basis functions.

To investigate the effects of increasing the number of basis functions, we compare the relative L2 errors
given by various settings. It is seen in Table 1 that relative L2 error decreases as N increases for all cases.

N 32 64 96 128

Galerkin (linear) 1.69e+00 7.73e-02 1.91e-02 8.69e-03

Galerkin (quadratic) 3.83e-02 5.58e-03 2.26e-03 1.13e-03

Collocation (Hermite polynomial) 1.97e-01 1.18e-02 2.34e-03 7.50e-04

Collocation (spline) 6.44e-01 1.83e-02 3.16e-03 9.83e-04

Table 1: Convection equation (β = 50). Relative L2 errors at different N for different methods.

In Table 2 we compare the performance of the proposed method with the DABG [24] at different β. One
can observe that for these two methods, when β is relatively small, as N increases, the error first decreases
and then increases; when β is relatively large, the error consistently decreases as N increases. We conjecture
that reason for this phenomenon is that when β is relatively small (i.e., the solution is smoother), small N
can achieve good accuracy, while larger N may lead to greater optimization challenges. Another message
from Table 2 is that the proposed approach exhibits reduced sensitivity to temporal frequency variations in
the solution compared to DABG.

N 8 16 32 64 96 128

β = 10
Galerkin(quadratic) 1.55e-02 3.52e-03 1.03e-03 4.67e-04 6.91e-04 3.91e-01

DABG 1.36e-02 1.25e-04 8.73e-04 1.04e-05 3.33e+00 1.32e+00

β = 30
Galerkin(quadratic) 3.37e-01 4.98e-02 8.03e-03 1.90e-03 9.03e-04 5.04e-04

DABG 1.12e+00 2.87e-01 2.93e-04 4.34e-04 5.75e-05 1.06e-04

β = 50
Galerkin(quadratic) 4.67e+00 2.15e-01 3.83e-02 5.17e-03 2.08e-03 1.32e-03

DABG 1.05e+00 1.03e+00 3.30e-03 1.44e-03 6.46e-04 6.39e-04

Table 2: Convection equation. Different relative L2 errors between the proposed method and DABG.
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We also compare the performance and computational time of the proposed method with causal PINNs.
We set the same hyper parameters to compare these two methods, including the architecture of neural
network, the initial learning rate, decay rate, the number of training points in space, and iterations. The ϵ in
causal PINNs is set to {1e−2, 1e−1, 1e0, 1e1, 1e2}. All runtime statistics were computed on the same hardware,
a Nvidia Tesla V100 w/ 32 GB memory. It is shown in Table 3 that as β increases, the proposed method
demonstrates superior accuracy compared to causal PINNs. The proposed method (Galerkin projection)
runs approximately 100 times faster than causal PINNs. Such a significant difference in efficiency is due to
the distinct computational graphs adopted by these two methods. For the proposed method, because the
residual originates from the linear system defined in (20), we can pre-calculate the finite element sparse matrix
along the time direction. We consider the computational cost of automatic differentiation in calculating the
residual. For any given spatial point x, causal PINNs need n back-propagation computations for n temporal
points, while our method only requires a single back-propagation computation and one matrix-vector
multiplication of the above-mentioned finite element sparse matrix and the neural network output.

β 10 30 50

Error
Galerkin(quadratic) 2.95e-04 1.32e-03 3.57e-03

Causal PINNs 7.58e-04 1.12e-02 1.65e+00

Running time
Galerkin(quadratic) 57 62 63

Causal PINNs 6639 8087 8057

Table 3: Convection equation. Relative L2 error and running time between the proposed method and causal PINNs.

4.2. Allen-Cahn equation
The next example aims to illustrate the effectiveness of time marching technology in our proposed

method. Consider the following Allen-Cahn equation

ut − c2
1∇

2u + f (u) = 0, x ∈ [−1, 1], t ∈ [0, 1],

f (u) = c2(u3
− u),

u(x, 0) = x2 cos(πx),

u(1, t) = u(−1, t),

ux(1, t) = ux(−1, t),

(56)

where c2
1 = 0.0001 and c2 = 5. We take the number of linear mesh elements as 100 and represent the latent

coefficients {ωi(x;θ)} by a fully-connected neural network with tanh activation function, 4 hidden layers and
128 neurons per hidden layer. Similarly, we strictly impose the periodic boundary conditions by embedding
the input coordinates into Fourier expansion (see Appendix A). We create a uniform mesh of size 1,000
in the spatial computational domain [−1, 1], yielding 1,000 initial points and 1,000 collocation points for
enforcing the PDE residual. We proceed by training the resulting model via full-batch gradient descent
using the Adam optimizer for the total 100,000 iterations. The resulting L2 errors for different numbers of
time segments are shown in Table 4. We observe the relative L2 error significantly decreases as the number
of time segments increases. One can see that the predicted solution achieves an excellent agreement with
the ground truth, yielding an approximation error of 7.67e − 3 measured in the relative L2 norm.
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Nsegment 1 2 4

Error – 1.17e-02 7.67e-03

Table 4: The relative L2 error for different segments. (Linear finite element basis function with N = 100)

In addition, we employ quadratic basis functions and set N to 30. All other parameters remain consistent
with the previous configuration. In Table 5 similar results are observed compared to the previous scenario.
Moreover, we also present a representative predicted solution in Figure 5, one can see that the predicted
solution is in good agreement with the reference solution.

Nsegment 1 2 4

Error 2.25e-01 7.57e-03 5.08e-03

Table 5: Relative L2 error for different segments. (Quadratic finite element basis function with N = 30)
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Figure 5: Allen Cahn equation. From left to right: the prediction and absolute error. Relative L2 error is 5.08e-3 (Quadratic basis
function, Nsegment=4, N=30).

N 10 20 30

Galerkin (quadratic) 4.07e-03 7.87e-03 7.57e-03

Collocation (Hermite polynomial) 4.12e-03 5.51e-03 7.65e-03

Collocation (spline) 3.81e-03 3.89e-03 3.56e-03

Table 6: Relative L2 error for different approaches (Nsegment = 2).

We summarize some relative L2 errors for Nsegment = 2 in Table 6. We observe that the collocation
framework with piecewise spline functions has achieved the best accuracy. Moreover, we compare the
Galerkin projection with causal PINNs in Table 7. Again, we set the same hyper parameters to compare
these two methods. The ϵ in causal PINNs is set to {1e − 2, 1e − 1, 1e0, 1e1, 1e2}. It is shown that the accuracy
of these two methods is comparable. Note that due to the presence of non-linear term f (u), we must employ
a Gaussian quadrature formula of a sufficient degree of exactness for the Galerkin projection in the time
direction. Even so, the proposed method runs approximately 40 times faster than causal PINNs.
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Galerkin(quadratic) Causal PINNs

Running time 71 2524

Error (Nsegment=1) 1.95e-02 1.33e-02

Error (Nsegment=2) 3.58e-03 3.73e-03

Table 7: Relative L2 error and running time for the proposed method and causal PINNs.

4.3. High-dimensional linear problem
To demonstrate the effectiveness of the proposed approaches in tackling high-dimensional PDEs, we

consider the following parabolic equation with non-constant coefficients

ut − ∇ · (a(x)∇u) = f , in Ω × (0, 1],
u(x, 0) = 0, in Ω,
u = 0, on ∂Ω × [0, 1],

(57)

with a(x) = 1+ |x|2/2. The domain is set to be the 20-D unit ballΩ = {x ∈ R20
| |x| < 1}, and the true solution

is set to be
u(x, t) = sin

(
sin(2πωt)(|x|2 − 1)

)
. (58)

We set ω to be 3 and Nsegment to be 1. For simplicity, here we only test the performance of the proposed
approach with quadratic finite element basis functions. We represent the latent coefficients {ωi(x;θ)} by a
fully-connected neural network with activation function tanh, 5 hidden layers, and 128 neurons per hidden
layer. We impose exactly the Dirichlet boundary conditions by transforming the output into the following
form:

ωi(x;θ) = ωi(x;θ)(|x| − 1). (59)

In addition, we set ũ0(x;θ) to be zero such that the initial conditions are exactly satisfied. To obtain a set of
training data for evaluating PDE residual, we randomly sample 100,000 collocation points in Ω. Since the
problem is linear, equation (20) is used to define the loss. We set the size of mini-batch to 5,000 and train the
model via mini-batch stochastic descent with the Adam optimizer for 40,000 iterations. The corresponding
results for different numbers of mesh elements are summarized in Table 8. We observe that the resulting
relative L2 error is 9.67e − 4, which is more accurate than the ones in recent work [24] (3.07e − 3 for the deep
adaptive basis Galerkin approach and 4.54e − 2 for the PINNs).

N 10 20 40 80

Galerkin (quadratic) 4.45e-02 7.61e-03 1.74e-03 9.67e-04

Collocation (Hermite polynomial) 2.28e-02 1.41e-03 6.58e-04 1.04e-03

Collocation (spline) 4.89e-02 1.42e-02 6.42e-04 8.89e-04

Table 8: Relative L2 error for different N.

4.4. High-dimensional nonlinear problem
In this case, we solve the Allen-Cahn equation

ut − ∆u + u3
− u = fAC, in Ω × [0, 1],

u(x, 0) = 0, in Ω,
u = 0, on ∂Ω × [0, 1].

(60)
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The domain is set as Ω = {x ∈ R20 : |x| < 1}, and the true solution is set to be

u(x, t) = sin
(
sin(2πωt)(|x|2 − 1)

)
.

Here we set ω to be 3 and Nsegment to be 1. For simplicity, We only test the performance of the proposed
approach with quadratic finite element basis functions. We represent the latent coefficients {ũi(x;θ)} by a
fully-connected neural network with tanh activation function, 5 hidden layers and 128 neurons per hidden
layer. The initial condition and Dirichlet boundary condition can be exactly embedded into the network
structure (as described in Section 4.3). We set K in equation (13) to be 30 and randomly sample 100,000
collocation points for evaluating PDE residual. We set mini-batch to be 5,000 and proceed by training the
resulting model via stochastic gradient descent using the Adam optimizer for 40,000 iterations. The obtained
errors for different number of finite element N are shown in Table 9. The resulting relative L2 error is 1.16e−3,
which is more accurate than the recent ones in [24] (2.07e − 3 for the deep adaptive basis Galerkin approach
and 7.79e − 2 for the PINNs).

N 10 20 40 80

Galerkin (quadratic) 4.48e-02 7.92e-03 1.89e-03 1.16e-03

Collocation (Hermite polynomial) 2.48e-02 2.21e-03 1.72e-03 1.33e-03

Collocation (spline) 5.04e-02 1.61e-02 2.42e-03 2.31e-03

Table 9: Relative L2 error for different N.

4.5. Low regularity test problems
Our last example aims to demonstrate the effectiveness of the proposed adaptivity strategy. We consider

the following low-regularity equation

ut − ∆u = f in Ω × (0,T]
u(x1, x2; 0) = g(x1, x2) in Ω × {0},
u(x1, x2; t) = h(x1, x2; t) on ∂Ω × (0,T].

where Ω = [0, 1]2,T = 0.5 and the true solution is chosen as

u(x1, x2, t) = exp
(
− β
[
(x1 − t − 1/4)2 + (x2 − t − 1/4)2

] )
.

This solution has one peak at the point (t + 1/4, t + 1/4) and decreases rapidly away from (t + 1/4, t + 1/4),
see Figure 6.
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Figure 6: Exact solutions for different time (β=1000). From left to right: t = 0, 0.25 and 0.5.

We first consider the case with β = 200. We represent the latent coefficients {ω̃i(x;θ)} by a fully-
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connected neural network with activation function tanh, 5 hidden layers and 128 neurons per hidden layer.
To simplify the training objective, we precisely embed the Dirichlet boundary conditions into the neural
network architecture through the following transformation

ω̃i(x;θ) = x1x2(1 − x1)(1 − x2)ω̃i(x;θ).

For B-KRnet, we take 8 CDF coupling layers, and two fully connected layers with 32 neurons for each CDF
coupling layer. The corresponding activation function is tanh. To assess the effectiveness of our adaptive
sampling approach, we generate a uniform meshgrid with size 256×256×100 in [0, 1]2

× [0, 0.5] and compute
relative L2 error on these grid points.

For collocation projection, we set the number of piecewise cubic spline basis functions to 20, and randomly
sample 1,000 collocation points in Ω as our initial training set. We let Nadaptive = 5 and Nnew = 500. The
number of epochs for training u(x, t;θ) and pθ f (x, t) is set to 40,000 and 5,000, respectively.

0 1 2 3 4 5

10 2

Figure 7: Relative L2 error of different adaptivity iterations for collocation projection.

In Figure 7, we plot the approximation errors with respect to the adaptivity iterations. It is clearly seen
that the error rapidly decreases as the adaptivity iteration step k increases. Figure 8 shows the evolution of
temporal distribution pdis(t) for k = 1, 3, 5. It is seen that the largest density at the first adaptivity iteration
is around terminal time. After the training set is refined, the error profile becomes more flat at k = 3 and
5. Similar results are observed in Figure 9, which indicates that the distribution of residual becomes more
uniform as adaptivity iteration increases.
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Figure 8: Temporal density of the 1st, 3rd, 5th adaptivity iteration. (β = 200, collocation projection)
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Figure 9: From top to bottom: The generated samples of the 1st and 5th adaptivity iteration. (β = 200, collocation projection)

For Galerkin projection, we set the number of piecewise quadratic basis functions to 20, the remaining
hyper-parameter settings remain the same. The corresponding numerical results, included in Appendix B,
are very similar to the results for collocation projection.

We also investigate the case when β = 1000. Here we take the Galerkin projection as an example.
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Figure 10: Relative L2 error for different sampling strategies (β=1000, Galerkin projection).

In Figure 10, we compare the performance of uniform sampling and adaptive sampling using the relative
L2 error, which demonstrates the necessity of adaptive sampling for this case. Figure 11 shows the evolution
of temporal weights λi for k = 1, 3, 5. The observed temporal weights exhibit an alternating high-low pattern,
which can be attributed to the properties of the test basis function in time dimension. One also finds that
the error profiles become more flat as the adaptivity iterations increase. Figure 12 shows the generated
samples of bounded KRnet with respect to adaptivity iterations k = 1, 5. It is seen that the largest density
of generated samples at the first update is around the peak of the reference solution, which is consistent
with the residual-induced distribution. Moreover, as k increases, we expect the tail of the residual-induced
distribution becomes heavier since the adaptivity tries to make the residual-induced distribution more
uniform. It is illustrated by the last update in the Figure 12, which is consistent with previous findings
reported in [29].
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Figure 11: Temporal density of the 1st, 3rd, 5th adaptivity iteration. (β = 1000, Galerkin projection)
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Figure 12: The distribution of collocation points obtained by bounded KRnet pB−KRnet(x|t) for the first and last updates. From left to
right: t = 0, 0.25 and 0.5. (β = 1000, Galerkin projection)

5. Conclusion

In this paper we have developed a hybrid numerical method for solving evolution partial differential
equations (PDEs) by merging the time finite element method with deep neural networks. The key idea of the
proposed method is to represent the solution as a tensor product comprising a series of predetermined local
finite element basis functions in time and a sequence of unspecified neural networks in space. Subsequently,
we apply the Galerkin or collocation formulation to the original evolution equation, eliminating the temporal
variable and resulting in a differential system exclusively involving unknown neural networks with respect
to the spatial variable. Furthermore, to address the evolution problems characterized by high dimensionality
and low regularity, we have developed an adaptive sampling strategy where the training set and the model
are updated alternately to improve both efficiency and accuracy. Numerical experiments have demonstrated
the effectiveness of our proposed approaches. Several issues deserve further investigation. First, a rigorous
error analysis is still missing especially for the collocation projection. Second, while herein we only consider
linear and quadratic finite element methods over a uniform mesh, the strategy can also be generalized
to hp-finite element method in the temporal domain. Finally, the proposed methods need to be further
investigated for convection-dominated problems.
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Appendix A. Exact periodic boundary conditions

Following the work from [10, 11], we can exactly enforce C∞ periodic boundary conditions by applying
a Fourier feature encoding to the spatial input of the network. The spatial encoding is

v(x) = {1, cos(ωx), sin(ωx), · · · , cos(Mωx), sin(Mωx)}

where ω = 2π
L ,L = xmax − xmin, and M is a non-negative integer representing the sinusoidal frequency of the

input. In this work, we take M = 10.

Appendix B. Supplementary Figures
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Figure B.13: Relative L2 error of different adaptivity iterations for Galerkin projection. (β = 200)
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Figure B.15: From top to bottom: The generated samples of the first, and the last adaptivity iteration. (β = 200, Galerkin projection)
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