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ABSTRACT

In this work, we propose an adaptive learning approach based on temporal normalizing flows for
solving time-dependent Fokker-Planck (TFP) equations. It is well known that solutions of such
equations are probability density functions, and thus our approach relies on modelling the target
solutions with the temporal normalizing flows. The temporal normalizing flow is then trained based
on the TFP loss function, without requiring any labeled data. Being a machine learning scheme, the
proposed approach is mesh-free and can be easily applied to high dimensional problems. We present
a variety of test problems to show the effectiveness of the learning approach.
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1 Introduction

The Fokker-Planck (FP) equations, which describe the time evolution of probability density functions (PDFs) of
complex stochastic systems, have been widely used in different fields such as physical and biological modelling[31][34].
Solving the FP equations numerically has been an important research topic in the past few decades. Generally, there
are two main ways to obtain the PDFs of stochastic dynamics: solving the FP equations directly, or evaluating the
transition probability density of the associated stochastic differential equations(SDEs). Traditional numerical methods
for doing this include the finite element methods [4]], the finite difference methods [19]], the path integral methods [37],
to name just a few. One of the biggest difficulties of these approaches is that either discretizition of a high dimensional
(unbounded) physical space is needed, or a large number of sample paths via Monte Carlo method [12] should be used.

In recent years, machine learning techniques have been widely used to solve partial differential equations (PDEs), see
e.g. [6L132}]13]] and references therein. Among others, we mention the deep Galerkin method [33]], the deep Ritz method
[7]], and the so-called physics-informed neural networks (PINNs) [28]]. These approaches have been widely applied to
many realistic problems, such as fluid mechanics [29, 2], high dimensional PDEs (with applications in computational
finance) [11} 41], uncertainty quantification [39, 27, 42, [14} [22], to name just a few. Meanwhile, generative models
such as generative adversarial networks [9]], variational autoencoder [17]] and normalizing flow (NF) [24,|30]], have also
been successfully applied to learn forward and inverse PDEs [3} 43|40, |20]. For instance, physics-informed generative
adversarial model was proposed in [38]] to tackle high dimensional stochastic differential equations. In [10], normalizing
field flow was developed to build surrogate models for uncertainty quantification problems.

As the solution of the Fokker-Planck equation is a probability density function, solving this problem can also be
considered as a density estimation problem. This motivates us to propose in this work an adaptive learning scheme
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based on the normalizing flow. More precisely, our approach relies on modelling the target solutions of the FP equations.
Consequently, the temporal normalizing flow is trained based on the TFP loss function (the physics informed residual),
without requiring any labeled data. We list in the following the main features and related works of our approach:

* Our approach is an extension of the previous interesting work [36] where only steady state FP equations are
investigated. To address time dependent problems, we propose an adaptive density approximation scheme
based on temporal normalizing flow.

* Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high
dimensional problems.

* QOur approach is based on PDE-loss functions, and does not need sample paths generated from stochastic differ-
ential equations. This is different from previous works such as [21]] where sample paths of the corresponding
stochastic dynamics are used.

* We present a variety of test problems, including FP equations with linear or nonlinear drift terms and high
dimensional problems, to show the effectiveness of the learning approach.

The remainder of this paper is structured as follows. In section[2} we provide with some preliminary results. Section
[3] provides our adaptive density approximation scheme based on the temporal normalizing flow. In Section 4] we
demonstrate the efficiency of our adaptive sampling approach with several numerical experiments. We then give some
concluding remarks in Section [3]

2 Problem setup

The main aim of this work is to solve the time dependent FP equations. To this end, we first give a brief introduction to
the FP equations.

2.1 Fokker-Planck equations
Consider the state variable X; modeled by the following stochastic differential equation
dXt = /J,(Xt,t) dt+0'(Xf,t) th, (21)

where X; and (X, t) are d-dimensional random vectors, o (X, t) is a d X M matrix and W; is an M -dimensional
standard Wiener process. The probability density p(x, t) for X satisfies the so called time dependent Fokker-Planck
(TFP) equation:

d d d
8
Z (z,t)p(x, 1)) ZZ D;j(x, t)p(z, )], 2.2)
P == ox; 83,‘]
where = (z1,- - ,2q), p is the drift vector u = (pu1,- - - , ptq) and D is the diffusion tensor D = %o-o-T, ie.,
D;j(x,t) = Zalkmtajkmt)

Sometimes, one may focus on the stationary solution of @D, i.e., the invariant measure independent of time,

d
0
;833[

In general, the solutions of the above TFP equations are defined in the unbounded domain with the following boundary
condition:

)] + Z Z 33:, o D (@)p()] = 0. 23)

=1 j=1

p(x) =0 as ||z — oo 2.4)

Furthermore, the solution, being a density function, should also satisfy the following extra constraint

/dp(a:,t)da: =1, and p(x,t)>0. (2.5)
R
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2.2 Normalizing flow and RealNVP

Notice that both the constraints (2.4) and (2.5)) bring essential difficulties for mesh-dependent numerical schemes when
solving the TFP equations. To this end, we introduce in this section the normalizing flow (NF), which serves as a
potentially efficient tool for handling TFP equations.

Normalizing flow provides a way for constructing flexible probability distributions over continuous random variables.
Specifically, suppose we want to approximate an unknown random variable € R? (we define px () as its density
function). The NF model seeks to find an invertible mapping f : & — =z, between a simple reference variable
z € R? (with known probability distribution pz, e.g., Gaussian) and the target variable x, i.e., z = f~'(2). Then the
distribution of « is given by

px(x) = pz(f(:l?))‘ det Vg f(x)], (2.6)

where V f(x) is the Jacobian. Given observations of x, the unknown invertible mapping can be learned via the
maximum likelihood estimations.

In the NF model, a complex invertible mapping f(-) can be constructed by stacking a sequence of simple bijections,
each of which is a shallow neural network, thus the overall mapping is a deep neural network. Namely, the mapping
f(+) can be written in a composite form:

z=f(x) = fiyjo fir—y oo fry(®). (2.7)
Its inverse and Jacobian determinants are given by
x=f""(z)=fyf oo flyo fif(2), 2.8)
L
|det Vo f(-)| = [ [ | det Va1 ()] (2.9)
i=1

where @[;_1) indicates the immediate variables with &g = x, x|;,) = z. Since computing the Jacobian determinants of
large matrices is generally computationally very expensive, the structure of function f should be carefully designed.
A successful example is ReaNVP [3]. Let x;; = (x[;),1, T[;,2) be a partition with x[;) ; € R™ and x;), € Ré—m™,
RealNVP proposes to use the following affine transformation:

L)1 = Lli—1],15

(2.10)
X2 = Tli—1),2 © exp(8i(®—11,1)) + bi(x[—1),1),

where s; : R™ — RI™™ b, : R™ — RY~™ are scaling and translation depending on x[;—1],1, and © is Hadamard
product. By doing this, the Jacobian matrix f () (for the vector case) is lower-triangular whose determinant can be
evaluated efficiently. Furthermore, s; and b; can be modeled by complex neural networks to enhance the expression
capacity of the invertible map.

The RealNVP model has been widely adopted recently [[18, 116} 26]. Nevertheless, we mention here the interesting work
[35]] where a so-called KR-net is proposed to enhance the expressive power and improve the numerical stability over
RealNVP.

3 Methodology

In this section, we shall propose our learning scheme for the TFP equations.

3.1 Temporal normalizing flow

Note that the NF model discussed in the above section is time-independent. To address time dependent FP equations,
we first introduce the so-called temporal normalizing flow (TNF). The TNF was proposed by Both and Kusters [[L]
aiming at estimating time evolving distributions.

Let Z be a d + 1 dimensional real vector including the temporal variable, namely, = (x,t). In addition, Zisad + 1
dimensional latent variable, Z = (z,t*), obeying a simple distribution. Then, we consider the following transformation:

pg(®) =pz(z)|det J|, Z=f(2), G.D
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where J is Jacobian of f(Z). As the conservation law for the temporal axis is not always correct, i.e. [ p(z,¢)dedt # 1,
we cannot include it as an additional dimension in eq. (3.1I). Notice that the determinant of the Jacobian is

0z 0z
| o=z ot

det J = o ol 3.2)
Jx Ot

where z is the latent spatial coordinate and ¢* the latent temporal coordinate. By letting the latent time ¢* be exactly
equal to the real time ¢, one obtains

0z 0z

— = 0 t
det ] = |0z Ot| = ‘z("’> , 3.3)
0 1 x
Consequently, the temporal normalizing flow can be written as
0z
pg(x,t) =ps(2,1) =’ %= f(z,t). (3.4)

Similar to (2.7), f(-,t) can be constructed by stacking a sequence of simple bijections. Namely, given time ¢, we have

z = f(x,t) = firj o fir—1y 0o fruy(x, t). (3.5)
The inverse of f is then given by
x=f""(zt) = fj o fig oo fipj (2:1). (3.6)
Consequently, the corresponding Jacobian can be obtained by using the chain rule:
L
|det Vo f(-,t)| = [ [ | det Vay,_, f1 (- 1)1 (3.7)

i=1

where x(;_1j indicates the immediate variables with z(g) = x, z[1] = 2.

3.2 Architecture

In this section, we present the main architecture of our TNF. Inspired by the construction of KR-net [35], our TNF
model can be regarded as a simplified extension of KR-net from spatial domain to temporal-spatial domain. Specifically,
each ff;; in our TNF model consists of an Actnorm layer, followed by a modified time-dependent affine mapping [3].
For the last layer, we apply a polynomial spline transformation to increase the modelling power [23]]. Figure[I|shows
the flow chart of our proposed model, and we shall provide with more details in the following subsections.

?

Polynomial spline layer
@—) Affine coupling layer

| x (L-1)

Actnorm

T—

Figure 1: The architecture of our proposed model.
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3.2.1 Actnorm: scale and bias layer
We adopt the Actnorm layer with data dependent initialization proposed by Kingma and Dhariwal [16]:
Y = a; Oz + b;, (3.8)

where a; and b; are trainable parameters. The parameters can be initialized by the statistic mean and variance related to
mini batch data. After initialization, the scale and bias are treated as regular trainable parameters that are independent
of the data. The inverse can be easily obtained via

) = (yp) — bi)/ai, (3.9)
where division here is operated on each corresponding component.
3.2.2 Affine coupling layer

Letxp;) = (as[l-]’l, zc[im) be a partition with [;; € R™ and @[;) 2 € R4~ Then we consider a time-dependent affine
coupling layer ff;)(-,t) as follows:
Lli],1 = L[i—1],15

[i].1 [i-1],1 N (3.10)

T(i)2 = Tli—1)2 © (ld_m + Btanh(si(m[i_lm,t))) + e © tanh(q;(®[i—1),1,1)),

where || < 1is a user-specified parameter (e.g. 0.6), 14—, denotes a d — m dimensional vector whose components
areall 1, s; : R™T1 — R4~ and g; : R™*! — R4~ are scaling and translation depending on @[;—1),1 and t. While
¢; € R4™™ is a trainable variable which depends on data directly. Notice that the inverse can be easily computed via:

Li—1],1 = L[i],1,

v 1 (3.11)
x(i—1),2 = (T2 — S tanh(q;(x;),1))) © (ld,m + Btanh(si(w[i]717t))) .
The Jacobian of ;) (-, t) is given by
I 0
Vo @) = | v, @y, diag(lam + atanh(s;(@p_y1,1) (3.12)
Furthermore, we can model s;, b; via neural networks
(si,qi) = NN[Z-] (w[i,l] , t). (3.13)

Note that f; (-, t) only changes Z[;_1],2, hence we can exchange the positions of ;) ; and @ ;) » to ensure that each
component of & can be updated.

3.2.3 Polynomial spline layer

For the last layer, we use the polynomial spline layer proposed by [36]. Without loss of generality, we present the
formula below for the case of d = 1. While for higher dimensional cases one simply uses the tensor product arguments.
The associated transformation is given by

Y(x+c)—ec, x€(—00,—C)

~

G(r) =14 2cG(EE)—¢, z€(—c0) (3.14)

v(x —¢) + e x € (¢, 00)

where v > 0 is a used-specified small parameter (e.g. 10~°), c is a prior constant describing the range of nonlinear
transformation, and G is a continuous piecewise linear cumulative probability function. Specifically, let 0 = [y < I; <
+++ < ly—1 < Iy, = 1 be a given partition in the unit interval and {k; };71:0 be the corresponding weights satisfying
> j k; = 1. A piecewise linear polynomial can be defined as follows:

kj+1—k;

p(z) = (=1) +kj, Voellyljn] Vi (3.15)

liv1—1
Then the corresponding cumulative probability function G admits the following formulation:

-1
G(z) = M(m—l-)%k-(m—z-)+jzm(lm — 1), Yz ell,li], Yt (3.16)
2(ljr1 — 1) ! ! = ’ AR
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For the sake of the continuity of p(z) at z = 0 and = = 1, one can set kg = k,, = . Furthermore, we can model
(kY7 as:

o exp(k;)

’ ZZO eXp(];i) ’

where {1%7} are trainable parameters. Notice that the polynomial spline layer lHl yields explicit monotonous
expressions, and its inverse can be readily computed.

j=1,-,m—1, (3.17)

3.3 Solving time dependent FP equations via temporal normalizing flow

We are now ready to present our scheme for solving time-dependent FP equations (2.1}j2.2) with temporal normalizing
flow. Specifically, consider the following TFP equations:

pr+Nelpl =0, xeQ, te(0,T],
p(x,0) = po(x), x€Q,
p(x,0) = 0 as ||| — 0, (3.18)

/p(a:,t)da: =1, p(x,t) >0, x €, t€]0,T],
Q

where N, denotes a differential operator with respect to z and 2 = R<. In addition, p : Q x [0,7] — R* U {0}
denotes the unknown latent quantity of interest.

We proceed by approximating p(x, t) via a temporal normalizing flow pg(x, t), where 6 denotes all trainable parameters
of the model, and the prior of x is assumed to be Gaussian. Then we adopt the physical law (i.e., the TFP equation) to
yield the following residual

r(x,t) = gpg(w t) + Nzpe(x, t)], (3.19)

where the partial derivatives with respect to time and space coordinates can be readily computed using automatic
differentiation. Notice that, unlike traditional mesh-dependent approaches (such as the finite element/difference
methods), the non-negativity and conservation constraints naturally hold for pg(-,t). To this end, we propose the
following loss function for training the parameter 6:

Lpde(0) = ML (0) + NicLic(0), (3.20)

where £, and L;. are the equation loss and the initial condition loss, respectively. More precisely, we have

’L
E |re( wr,tr 2,

Here, N,, N, denote the batch sizes of training data {(z%, )} N7, {xl., po (i) }Vis, respectively. {\,, \ic} are
weight parameters.

Z\pe i,0) — polal). (3.21)
=1

1C.

Notice that for each ¢, p(x, t) is defined on the whole domain R?. However, in practice p(, ) is generally concentrated
in a small (yet unknown) region. Moreover, the regularity of solution p(,t) may also vary in the computation domain.
Consequently, how to efficiently choose the training points becomes a core issue. Obviously, a uniform sampling
approach in a possibly large domain is not practical. We thus need to develop adaptive sampling strategies. In the TNF
framework, this becomes possible, and we propose the following strategy:

1. Initialization: generate an initial training set with samples uniformly distributed in a given domain:
CO = {mzv 1}527‘1 C Dy.

2. Train the temporal normalizing flow by minimizing the loss function (3.20]) with training data Cj to obtain a
new probability distribution p; (z, ¢; 0).

3. Generate samples with p; (-, 7;6) to get a new training set C; = {&},¢/}"  and set Cy = C}. Notice
that for each ¢}, @} can be obtained by transforming the prior Gaussian samples via the inverse temporal
normalizing flow.

4. Repeat steps 2-3 for N,gaptive times to get a convergent approximation.

More details for the sampling procedure are given in Algorithm [I]
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Algorithm 1 Temporal normalizing flow for time-dependent FP equations

Input: maximum epoch number N, maximum iteration number Nagaptive, hyper parameter o, A, Aic, initial
training data C,. = {(z%,t2)}N", Cie = {&i } N5 Op = {t11 V7, U {0} V19, tolerance €y, €2;
Loig = 05
for k = 1, 7Nadaptive do
forj=1,--- ,N.do
Divide C' = {C,,, Ci.} into m batch {C*®}_, randomly;
forib=1,--- ,mdo
Compute the loss function L;bde for mini-batch data C'%;
Update 0 by usin% Adam optimizer;
Lyew = % ZZ:] L;dc;
if L < €1 01 |Lold — Lne’w‘ < €5 then
Break;
else
Lold = Lnew;
Ne = a* Ng;
Sample from p(-, t; @) for ¢ € Cp and update training set C';

Output: The predicted solution p(x, t; 0).

4 Numerical results

In this section, we present a series of comprehensive numerical tests to demonstrate the effectiveness of the proposed
algorithm. To quantitatively evaluate the accuracy of the numerical solution pg, we shall consider both the relative L?
error ||p* — pe||2/||p*||2 and the relative KL divergence given by

DxL(®*()llpe(t) _ Ep-(r) log(p™(t)/po(t))

H(p*(t)) —Ep- () log p*(t)

where [E denotes the expectation. We approximate the above advocated relative KL divergence by Monte Carlo
integration, namely,

* Ny * . .
Dy (p*(t)llpe(t) | 1 3oi2 (log(p* (xi;t) — logpe(wi; t)))
* - N, . :
H(p*(t)) Ny — > i logp*(x45t)
Here p* is the reference/exact solution, and x;(t) is drawn from the ground truth p*(z; ¢) and the amount of validation
data is set to IV, = 106 for each t.

We shall employ hyperbolic tangent function (Tanh) as the activation function. For each 7, NN; (see|3.13) is a feed
forward neural network with two hidden layers and 32 neurons. We use a half-half partition x[;) = (x[; 1, sc[l-m),
T € RL/2], T2 € R4-L4/2] " We initialize all trainable parameters using Glorot initialization [8]. For the
training procedure, we use the Adam optimizer [15] with an initial learning rate 0.001. All training data have the shape
Ng X Ng, where N, is the number of spatial sample points and [V, is the temporal sample points. All numerical tests
are implemented with Pytorch.

4.1 A toy example

As our first example, we start with a benchmark example to illustrate how the adaptive algorithm works. We consider a
2D TFP equation of the form

dp 1

P _Ap= t 1 R?
5~ 3P 0, € (0,1], = € R,
1 1 , , 4.1)
p(a:,())%exp<2a:4~12|), z € R,
and the exact solution yields
1 |l —4- 152
)= ——— -—— . 4.2
P@b = o eXp( 2(t+1) 42)

The number of epochs is chosen as N, = 20, o = 2, batch size is set to 1000, and five adaptivity iterations are
conducted for this problem, i.e., Nadaptive = 5. We take L = 6 affine coupling layers and actnorm layers. In addition,
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we turn off the polynomial spline layer. The initial spatial training set is generated via the uniform distributed points in
[—3, 3]% (which only contains partial information of the exact solution), and the sample size is N, = 1000 for each
moment. The temporal training set is uniformly sampled in the unit interval [0, 1] with size N; = 20 which results in
total 1000 x 20 = 20, 000 training points for each iteration step for &k = 1, ..., Nadaptive-

t=1.0 t=1.0

1 5 9 -3 1 5 9 -3 1 5 9

Figure 2: A toy example. Training samples at different adaptive iterations. Left panel: Nagaptive = 1. Middle panel:
Nadaptive =2. Right panel: Nadaptive =4.

The training points for different adaptive iterations at time ¢ = 1 are presented in Figure[2] One can clearly observe that,
the training points become increasingly closer to the ground truth as adaptive iterations increase, which shows that the
adaptive sampling scheme is rather effective. The predicted solution and the exact solution are presented in Figure[3]
and these figures indicate that the predicted solution yields an excellent agreement with the exact solution. The relative
L? error and relative KL divergence with different adaptive iterations are also provided in FigureEl

Predicted

s s Exact le—1 s Absolute error 1le—5
K 5
: 4
4 4 . 4 3
. 2
1
0 0 0
0 4 8 0 4 8 0 4 8
Predicted s Exact le—1 s Absolute error le—4
) 2.0
15
4 ) 4
1.0
0.5
0 0
0 4 0 4 8 0 4 8
s Predicted 8 Exact le-2 s Absolute error le—4
1.75
7
1.50
6
1.25
5
4 4 4 4 1.00
3 0.75
> 0.50
1 0.25
0 0 0

0 4 8 0 4 8 0 4 8

Figure 3: A toy example. Predicted solution versus the reference solution for different time ¢. Top row: ¢ = 0. Middle
row: t = 0.5. Bottom row: ¢t = 1.
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—e— L2error
KL divergence

Figure 4: A toy example. Relative L? error and relative KL divergence at ¢ = 1 for different adaptive iterations k.

4.2 Linear oscillator

We next consider the TFP equation (2.2) with
p = (22, =029 —x1), D = diag(0, 0.2). 4.3)
The initial condition is given by

where AV denotes Gaussian distribution. We consider that the time interval is [0, 3] and the "exact" solution of this
example is computed by the ADI scheme [23]] in a truncated spatial domain [—5, 5]? with mesh size §h = 0.01 and
0t = 0.01. For our approach, we use N, = 60 and o = 1. For now, 1000 batch size and four adaptivity iterations are
conducted for this problem, i.e., Nayqaptive = 4. We take L = 8 affine coupling layers and actnorm layers, and turn off
the polynomial spline layer. The initial spatial training set is generated through the uniform distribution with a range
[—5,5]2, and the corresponding initial temporal training set is uniformly sampled in the interval [0, 3], which results in
total 2000 x 100 = 200, 000 training points.

The comparison between the numerical solution and the ground truth is presented in Figure[5] We again observe a good
agreement between the predicted and the exact solutions. Moreover, Figure E] shows the behaviors of the relative L?
error for different adaptive iterations Ngaptive, Which suggests that a large number of iterations admit great help for
improving the convergence.

4.3 Nonlinear oscillator

We now consider the TFP equation with a nonlinear drift term:
= (z2, 1 — 042y — 0.123), D = diag(0, 0.4). 4.5)

The initial distribution is given by

p(x,0) = N((0,5), I). (4.6)

We solve this problem in time interval [0, 3], and again we compute the reference solution by the ADI scheme in
a truncated spatial domain [—10, 10]?, with mesh size 6h = 0.01 and 6t = 0.005. For our learning scheme, the
parameters are chosen as IV, = 50, a = 1.5. We use five adaptivity iterations, i.e., Nadaptive = O, and set batch size to
10000. We use L = 4 affine coupling layers and actnorm layers, and turn on the polynomial spline layer with 50 nodes.
The initial spatial training set is generated through a uniform distribution in a range [—10, 10]? with sample size 5000,
and the corresponding initial temporal training set is chosen from a nonuniform partition(with 100 equidistant nodes in
the [0, 1.5] and 200 equidistant nodes in the [1.5, 3]), which results in total 5000 x 300 = 1, 500, 000 training points.
As shown in Figure[7] a good agreement can be achieved between the predictions and the exact solutions.

We also present the relative L? errors and relative KL divergences with different adaptive iterations in Figure Again,
we can see that more iterations provide great help for improving the convergence. However, similar to the last example,
we also observe that the numerical error seems to increase as time evolves. Nevertheless, we shall show in the next
examples that this can be improved by increasing the training points and iterations as time evolves.
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Figure 5: Linear oscillator. Predicted solution versus the reference solution for different time ¢. Top row: ¢ = 0. Middle
row: t = 1.5. Bottom row: ¢t = 3.

R
AwN e

—e— k:

[3
—e— k:
—e— k:

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
t t

Figure 6: Linear oscillator. Relative L? error and relative KL divergence at different adaptive iterations k. Left panel:
relative L? error. Right panel: relative KL divergence.

4.4 High dimensional TFP equations

Finally, we consider a relatively high dimensional TFP equation:
op 1
— —-Ap+2V-p=0,
ot 27 p @.7)

p(e,0) = (27)~ Y% exp(—||z*/2).
Here z € R% and ¢ € [0, 1]. The corresponding exact solution is given by

|a:—2t-1d|2)

@r(t+ 1))42 P ( 2(t+ 1) 48

p($, t) =

10
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Figure 7: Nonlinear oscillator. Predicted solution versus the reference solution for different time ¢. Top row: ¢ = 0.
Second row: ¢t = 1. Third row: ¢ = 2. Bottom row: ¢ = 3.

0

We shall test this problem for the cases of d = 4 and d = 8. For d = 4, we set N, = 100, & = 2, Naqaptive = 2, batch
size is 10000. We take L = 8 affine coupling layers and actnorm layers, and we turn off the polynomial spline layer.
The initial spatial training set is generated through a uniform distribution with a range [—3, 3]%, and the corresponding
initial temporal training set is uniformly sampled in the unit interval [0, 1], which results in total 10000 x 50 = 500, 000
training points. The comparison between the prediction and the ground truth is shown in Figure[9] We can observe a
good agreement between the predicted and exact solutions.

To test the effectiveness of the adaptivity procedure, we present the relative L? errors and relative KL divergences with
k =1and k = 2 in Figure[I0] Notice that a clear (linear) increase of the numerical error over time is observed. To
alleviate this, we next consider a nonuniform sampling procedure for both the time domain and physical domain. More

precisely, the time interval [0, 1] is divided into n parts {¢1, ..., ¢, }:
Tt
ti=1-—— T2 =1, .n 49
™+ 1 ! " @9)

where r = 1.05 and n = 100. For fixed ¢, the number of spatial sample points IV, is decided by
Na(t:) = No(1+ [(i — 1)/20]) (4.10)

11
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Figure 8: Nonlinear oscillator. Relative L? error and relative KL divergence at different adaptive iterations k. Left
panel: relative L? error. Right panel: relative KL divergence.

where Ny = 5000. Such a sampling procedure results in total Y Ny (¢;) = 1.5 x 10° training points. Then, we repeat

7
the computation and the numerical result is presented in Figure[TT] it is clearly shown that the numerical errors are well
controlled over time (compared to Figure [T0).

For d = 8, we set N, = 100, & = 2, Nypgaptive = 3, and batch size is 10000. We take L = 10 affine coupling layers
and actnorm layers, and we turn off the polynomial spline layer. The initial spatial training set is generated through a
uniform distribution with a range [—5, 5|8, and the corresponding initial temporal training set is uniformly sampled in
the unit interval [0, 1], and thus the total sample size is equal to 20000 x 25 = 500, 000. The predicted solution and
the exact solution for ¢ = 0.2 and ¢ = 0.4 are presented in Figure[I2} Furthermore, the relative errors with different
adaptive iterations are shown in Figure[I3] Again, we may improve the convergence by adding more training points as
time evolves; however, for high-dimensional problems this will introduce a huge computational cost.
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Figure 9: 4D example. Predicted solution versus the reference solution for different time ¢. Top row: z; = 0.1, 24 =
0.5,t = 0.1. Bottom row: 1 = 0.1,24 = 0.5,¢ = 0.9.
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5 Conclusions

We have proposed to use the temporal normalizing flows for solving time-dependent Fokker-Planck (TFP) equations.
Our approach relies on modelling the target solution by temporal normalizing flows. The temporal normalizing flow is
then trained based on the TFP loss function, without requiring any labeled data. Being a machine learning scheme, the

12
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Figure 10: 4D example. Relative L? error and relative KL divergence for different adaptive iterations k. Left panel:
Relative L? error. Right panel: relative KL divergence.
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Figure 11: 4D example. Relative L? error and relative KL divergence with nonuniform time partition. Left panel:
Relative L? error. Right panel: relative KL divergence.
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Figure 12: 8D example. Predicted solution versus the reference solution projected for different time ¢. Top row:
o =---=x7 =0.4,t =0.2. Bottom row: x5 = --- = 27 = 0.8,t = 0.4.

proposed approach is mesh-free and can be easily applied to high dimensional problems. We present a variety of test
problems to show the effectiveness of the learning approach. There are, however, many important issues need to be
addressed. From a theoretical point of view, a rigorous stability and accuracy analysis is still missing. From a practical

13
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Figure 13: 8D example. Relative L? error versus relative KL divergence for different adaptive iterations k. Left panel:
Relative L? error. Right panel: relative KL divergence.

viewpoint, for high dimensional problems, one needs to carefully design the training sets to balance the computational
cost and the approximation error (which seems to increase as time evolves). Another possible way to tackle this issue is
to include more temporal information in the reference process or in the network architecture.
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