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We propose in this work the gradient-enhanced deep neural network (DNN) approach for func-

tion approximations and uncertainty quantification. More precisely, the proposed approach adopts

both the function evaluations and the associated gradient information to yield enhanced approxi-

mation accuracy. In particular, the gradient information is included as a regularization term in the

gradient-enhanced DNN approach, for which we present posterior estimates (by the two-layer neu-

ral networks) similar to those in the path-norm regularized DNN approximations. We also discuss

the application of this approach to gradient-enhanced uncertainty quantification, and present sev-

eral numerical experiments to show that the proposed approach can outperform the traditional DNN

approach in many cases of interest.

KEY WORDS: deep neural networks, two-layer neural network, Barron space, uncer-
tainty quantification

1. INTRODUCTION

In recent years, deep neural networks (DNNs) have been widely used for dealing with scientific
and engineering problems, such as function approximations(E et al., 2022; Schwab and Zech,
2019; Siegel and Xu, 2020), numerical partial differentialequations (PDEs) (E and Yu, 2018;
Raissi et al., 2019; Sirignano and Spiliopoulos, 2018), image classification (He et al., 2016; Lit-
jens et al., 2017), and uncertainty quantification (Meng andKarniadakis, 2020; Qin et al., 2021;
Yang et al., 2021), to name a few. Compared to traditional tools such as polynomials (DeVore
and Lorentz, 1993), radial basis functions (Majdisova and Skala, 2017), and kernel methods
(Liu et al., 2020), one of the main advantages of DNNs is theirpotential approximation capac-
ity for high-dimensional problems. Unlike classic tools such as polynomial approximations (for
which the relevant theoretical analysis results have been well studied), the associated theoreti-
cal analysis for DNNs is still in its infancy. Among others, we mention the seminal works by
Barron (1993) and E et al. (2022) where the concept of “Barronspace” was proposed, and some
approximation results for DNNs were presented.

In this work, we shall present the gradient-enhanced DNN approach. More precisely, our
approach adopts both the function evaluations and the associated gradient information. This
is similar to the classic Hermite-type interpolation. Our main contributions are summarized as
follows:
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• We present the gradient-enhanced DNN approach, where the gradient information is in-
cluded as a regularization term.

• For the gradient-enhanced DNN approach, we present posterior estimates (via a two-layer
neural network) similar to those in the path-norm regularized DNN approximations. More
precisely, we show that the posterior generalization errorcan be bounded by

O

(

d‖θ‖P

√

ln(2d)
n

+ ‖θ‖P

ln(‖θ‖P)√
n

)

,

wheren is the number of training points,‖θ‖P is the path norm, andd is the dimension.

• We discuss the application of our approach to gradient-enhanced uncertainty quantifica-
tion and present several numerical experiments to show thatthe gradient-enhanced DNN
approach can outperform the traditional DNNs in many cases of interest.

We remark that gradient-enhanced polynomial approximations have been proposed for uncer-
tainty quantification (Guo et al., 2018; Jakeman et al., 2015; Li et al., 2011; Lockwood and
Mavriplis, 2013; Peng et al., 2016). Under some circumstances of uncertainty quantification,
the cost of calculating derivatives can be inexpensive, e.g., by solving adjoint equations. These
additional derivatives actually increase the existing data information, which may bring a better
approximation. On the other hand, there are already many gradient-enhanced methods based on
deep learning. Many researchers consider enhancing the gradient value back-propagated by the
network to avoid the phenomenon of gradient vanishing or gradient explosion during training
(He et al., 2016; Schmidhuber and Hochreiter, 1997; Yan et al., 2022). A gradient-enhanced
damage model was used in Zhuang et al. (2020) to ensure the well-posedness of the bound-
ary value and yields mesh-independent results in computational methods. Some also regularize
the derivatives of the output of neural networks to improve the adversarial robustness and in-
terpretability (Ross and Doshi-Velez, 2018). In addition,a gradient-enhanced physics-informed
neural network (PINN) was proposed to improve the accuracy and training efficiency of PINNs
in Yu et al. (2022), where the gradient information (i.e., the associated adjoint equation) is in-
cluded to yield a modified PINN loss function. Different fromthese methods, our method is data
driven, tackling the case that derivatives are given along with function evaluations. Moreover,
theoretical analysis is provided to illustrate the feasibility and effectiveness of this method.

The rest of this paper is organized as follows. In Section 2, we set up the problem and present
some preliminaries. In Section 3 we present the error estimations in two-layer neural networks
for the gradient regularized approximation problem. Applications to uncertainty quantification
are discussed in Section 4. Finally, we give some concludingremarks in Section 5.

2. PRELIMINARIES

2.1 Problem Setup

We begin the discussion by considering function approximations via DNNs with labeled data.
We consider the target functionf∗ : Rd → R, and we assume that the following data are avai-
lable: {xi, yi,y

′
i}ni=1. Hereyi andy′

i are the functional evaluations and gradient evaluations,
respectively. Namely,

{

yi = f∗(xi), i = 1, . . . , n.

y′
i = ∇f∗(xi), i = 1, . . . , n.

(1)
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For simplicity, we assume that the data{xi}i lie in X = [−1, 1]d and 0≤ f∗ ≤ 1. We shall
show our analysis results via a two-layer neural network, for which the nonlinear function can
be defined as

f(x;θ) =

m
∑

i=1

akσ(w
T
k x), (2)

wherewk ∈ R
d,σ : R → R is a nonlinear activation function, andθ = {(ak,wk)}mk=1 is the

unknown parameter. We define a truncated form off(x;θ) through

Tf(x;θ) = max
{

min{f(x;θ), 1}, 0
}

.

By an abuse of notation, in the following we still usef(x;θ) to denoteTf(x;θ). For the training
{xi, yi}ni=1, the population risk can be defined by

L(θ) = Ex,y

[

ℓ(f(x;θ), y)
]

. (3)

The empirical risk with the training data yields

Ln(θ) =
1
n

n
∑

i=1

ℓ
(

f(xi;θ), yi
)

, (4)

whereℓ(f(x), y) = (1/2)(f(x)− y)2. For the gradient information, we consider

L′(θ) = Ex,y

[

ℓ̃
(

∇f(x;θ),y′
)]

, (5)

whereℓ̃
(

∇f(x;θ),y′
)

=
∥

∥∇f(x;θ) − y′
∥

∥

2
and

∥

∥·
∥

∥

q
indicates theℓq norm of a vector. Simi-

larly, the empirical risk with the training data{xi, yi,y
′
i}ni=1 yields

L′
n(θ) =

1
n

n
∑

i=1

[

ℓ̃(∇f(xi;θ),y
′
i)
]2
. (6)

Moreover, the path-norm of the two-layer neural network is defined as

‖θ‖P :=
m
∑

k=1

|ak|‖wk‖1. (7)

We are now ready to present the so-called gradient-enhancedDNN approach.

Definition 2.1 (Gradient-enhanced DNNs model). For a two-layer neural networkf(·;θ) of
width m, the gradient regularized risk is defined as follows:

Jn,β(θ) := Ln(θ) + β · L′
n(θ).

The corresponding regularized estimator is defined as

θn,β = argminJn,β(θ).

Note that the minimizers are not necessarily unique, andθn,β should be understood as any of
the minimizers.

The above approach can be viewed as an extension of the classic Hermite interpolation
(Spitzbart, 1960; Wu, 1992), and is motivated by applications such as gradient-enhanced un-
certainty quantification (Guo et al., 2018; Jakeman et al., 2015; Li et al., 2011; Lockwood and
Mavriplis, 2013; Peng et al., 2016).
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2.2 Barron Space

We now provide a brief overview of Barron space (E et al., 2019). LetSd−1 :=
{

w ∈ R
d | ‖w‖1

= 1
}

. LetF be the Borelσ-algebra onSd−1 and letP(Sd−1) be the collection of the probability
measures on

(

S
d−1,F

)

. Let B(X ) be the collection of functions that admit the following
integral representation:

f(x) =

∫

Sd−1

a(w)σ
(

〈w,x〉
)

dπ(w), ∀x ∈ X , (8)

whereπ ∈ P(Sd−1), anda(·) is a measurable function with respect to(Sd,F ). For anyf ∈
B(X ) andp ≥ 1, we define the following norm:

γp(f) := inf
(a,π)∈Θf

(
∫

Sd−1

|a(w)|p dπ(w)

)1/p

, (9)

where

Θf =

{

(a,π)
∣

∣

∣
f(x) =

∫

Sd−1

a(w)σ
(

〈w,x〉
)

dπ(w)

}

.

Definition 2.2 [Barron space (E et al., 2019)]. The Barron space is defined as

Bp(X ) :=
{

f ∈ B(X )
∣

∣γp(f) < ∞
}

.

We next present several assumptions.

Assumption 2.1. Throughout the paper we assume that

• X = [−1, 1]d and0 ≤ f∗ ≤ 1.

• The derivative off∗(x) is bounded by a constantD.

• The activation functionσ is scaling invariant, namely,σ(kz) = kσ(z), and satisfies
|σ(z)| ≤ C1|z|, |σ′| ≤ C2 andσ′ is Lipschitz continuous with a positive constantC3.
Specifically, we use rectified linear unit (ReLU), i.e.,σ(z) = max{z, 0} as activation
function with constantC1 = C2 = C3 = 1.

• ln(2d) ≥ 1; hered is the dimension of input data.

Proposition 2.1[Proposition of E et al. (2022)]. Let f ∈ C(X ), the space of continuous func-
tions onX , and assume thatf satisfies

γ(f) := inf
f̂

∫

Rd

‖w‖2
1 |f̂(ω)| dω ≤ ∞, (10)

wheref̂ is the Fourier transform of an extension off toR
d. Thenf admits an integral represen-

tation. Moreover,
γp(f) ≤ 2γ(f) + 2‖∇f(0)‖1 + 2|f(0)|. (11)

It is usually difficult to check condition (10). For further understanding, we recall the fol-
lowing relationship of Barron space and more classical function spaces, which can be found in
E and Stephan (2021) and references therein for details.

Proposition 2.2[Theorem 3.1 of E and Stephan (2021)]. If f ∈ Hs(Rd) for s > d/2+ 2, then
f ∈ B(Rd).

Proposition 2.2 states that every sufficient smooth function admits an integral representation.
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3. ERROR ESTIMATES FOR THE GRADIENT-ENHANCED DNN APPROACH

In this section, we present the error estimates for the gradient-enhanced DNN approach. To this
aim, we first present the following approximation theorem, which combines the relationship
between Barron spaces and two-layer neural networks.

Theorem 3.1. For anyf ∈ B2(X ), there exists a two-layer neural networkf(·; θ̃) of widthm,
such that

Ex

[

(

f(x)− f(x; θ̃)
)2
]

≤ 3γ2
2(f)

m
, (12)

Ex

[

∥

∥

∥
∇f(x) −∇f(x; θ̃)

∥

∥

∥

2

2

]

≤ 7γ2
2(f)

m
, (13)

∥

∥θ̃
∥

∥

P
≤ 2γ2(f). (14)

Proof. Let (a,π) be the best representation off , i.e., γ2
2(f) = Eπ

[

|a(w)|2
]

, and letU =
{wj}mj=1 be i.i.d. random variables drawn fromπ(·). Define

f̂U (x) :=
1
m

m
∑

j=1

a(wj)σ
(

〈wj ,x〉
)

.

Then the derivative off with respect tox is

∇f̂U (x) =
1
m

m
∑

j=1

a(wj)σ
′
(

〈wj ,x〉
)

wT
j .

LetL1
U = Ex

[

∣

∣f̂U(x) − f(x)
∣

∣

2
]

, L2
U = Ex

[

∥

∥∇f̂U (x)−∇f(x)
∥

∥

2

2

]

. Then we have

EU

[

L1
U

]

= ExEU

[

∣

∣f̂U (x)− f(x)
∣

∣

2
]

= ExEU





∣

∣

∣

∣

∣

1
m

m
∑

j=1

a(wj)σ
(

〈wj ,x〉
)

− f(x)

∣

∣

∣

∣

∣

2




=
1
m2

ExEU





(

m
∑

j=1

(

a(wj)σ
(

〈wj ,x〉
)

−f(x)
)

)(

m
∑

i=1

(

a(wi)σ
(

〈wi,x〉
)

−f(x)
)

)





=
1
m2

Ex

m
∑

i,j=1

Ewi,wj

[

(

a(wj)σ
(

〈wj ,x〉
)

− f(x)
)(

a(wi)σ
(

〈wi,x〉
)

− f(x)
)

]

=
1
m
ExEw

[

(

a(w)σ
(

〈w,x〉
)

− f(x)
)2
]

≤ 1
m
ExEw

[

(

a(w)σ
(

〈w,x〉
))2
]

≤ 1
m
ExEw

[

|a(w)|2
∣

∣σ
(

〈w,x〉
)∣

∣

2
]

≤ 1
m
ExEw

[

|a(w)|2
]

=
1
m
Ew

[

|a(w)|2
]

.
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Since‖wj‖1 = 1 andx ∈ [−1, 1]d, we have〈wj ,x〉 ≤ 〈wj ,x0〉 ≤ ‖wj‖1 = 1 wherex0 =
(x01,x02, . . . ,x0d) andx0i = sgn(wji), which implies the last inequality. Meanwhile,

EU [L
2
U ] = ExEU

[

∥

∥∇f̂U (x)−∇f(x)
∥

∥

2

2

]

= ExEU





∥

∥

∥

∥

∥

1
m

m
∑

j=1

a(wj)σ
′
(

〈wj ,x〉
)

wT
j −∇f(x)

∥

∥

∥

∥

∥

2





2

=
1
m2

ExEU





(

m
∑

j=1

(

a(wj)σ
′
(

〈wj ,x〉
)

wT
j −∇f(x)

)

)

×
(

m
∑

i=1

(

a(wi)σ
′
(

〈wi,x〉
)

wT
i −∇f(x)

)

)





=
1
m2

Ex

m
∑

i,j=1

Ewi,wj

[

(

a(wj)σ
′
(

〈wj ,x〉
)

wT
j −∇f(x)

)T

×
(

a(wi)σ
′
(

〈wi,x〉
)

wT
i −∇f(x)

)

]

=
1
m
ExEw

[

∥

∥a(w)σ′
(

〈w,x〉
)

wT −∇f(x)
∥

∥

2

2

]

≤ 1
m
ExEw

[

∥

∥a(w)σ′
(

〈w,x〉
)

wT
∥

∥

2

2

]

≤ 1
m
ExEw

[

|a(w)|2 ‖w‖2
2

]

≤ 1
m
ExEw

[

|a(w)|2 ‖w‖2
1

]

=
1
m
ExEw

[

|a(w)|2
]

=
1
m

Ew

[

|a(w)|2
]

.

Denote the path-norm of̂fU(x) byAU ; we haveE[AU ] = γ1(f) ≤ γ2(f).

Define eventsE1 =

{

L1
U <

3γ2
2(f)

m

}

, E2 =

{

L2
U ≤ 7γ2

2(f)

m

}

, E3 =
{

AU < 2γ2(f)
}

.

Using Markov’s inequality, we have

P(E1) = 1− P

({

L1
U ≥ 3γ2

2(f)

m

})

≥ 1− EU [L
1
U ]

3γ2
2(f)/m

≥ 1− γ2(f)
2/m

3γ2
2(f)/m

=
2
3
,

P(E2) = 1− P

({

L2
U ≥ 7γ2

2(f)

m

})

≥ 1− EU [L
2
U ]

7γ2
2(f)/m

≥ 1− γ2(f)
2/m

7γ2
2(f)/m

=
6
7
,

P(E3) = 1− P
(

{AU ≥ 2γ2(f)}
)

≥ 1− EU [AU ]

2γ2(f)
≥ 1− γ2(f)

2γ2(f)
=

1
2
.

Journal of Machine Learning for Modeling and Computing



Gradient-Enhanced Deep Neural Network Approximations 79

Therefore, letE4 = E1 ∩ E3, then

P(E1 ∩ E3) ≥ P(E1) + P(E3)− 1 =
1
6
.

Hence,

P(E1 ∩ E2 ∩ E3) = P(E4 ∩ E2) ≥ P(E4) + P(E2)− 1 ≥ 1
6
+

6
7
− 1 =

1
42

> 0.

That is,E1 ∩ E2 ∩ E3 6= ∅, which completes the proof.

According to Theorem 3.1, for a function in Barron space, we can use a two-layer neural net-
work to simultaneously approximate its function value and derivative. Next we will investigate
the posterior error estimation of the gradient-enhanced method.

3.1 A Posteriori Error Estimation

To give a posteriorierror estimation, we need to introduce the definition of the Rademacher
complexity and review some related conclusions.

Definition 3.1 [Rademacher complexity (Shalev-Shwartz and Ben-David, 2014)]. Let S =
{

x1,x2, . . . ,xn

}

be n i.i.d samples, and letF ◦ S be the set of all possible evaluations a
functionf ∈ F can achieve on a sampleS, namely,

F ◦ S =
{

(

f(x1), f(x2), . . . , f(xn)
)
∣

∣ f ∈ F

}

.

Let each component of random variableξ be i.i.d. according toP[ξi = 1] = P[ξi = −1] = 1/2.
Then, the Rademacher complexity ofF with respect toS is defined as follows:

Rn(F ◦ S) := 1
n
Eξ∼{±1}n

[

sup
f∈F

n
∑

i=1

ξif(xi)

]

. (15)

Lemma 3.1[Lemma 26.11 of Shalev-Shwartz and Ben-David (2014)]. Let S =
{

x1,x2, . . . ,

xn

}

be vectors inRd, H1 =
{

x 7→ 〈w,x〉
∣

∣ ‖w‖1 ≤ 1
}

. Then,

Rn(H1 ◦ S) ≤ max
i

‖xi‖∞
√

2 ln(2d)
n

.

Lemma 3.2 [Lemma 26.9 of Shalev-Shwartz and Ben-David (2014)]. For each i ∈ [n] =
{

1, 2, . . . , n
}

, let φi : R 7→ R be aρ-Lipschitz continuous, namely, for allα,β ∈ R we have
|φi(α) − φi(β)| ≤ ρ|α − β|. For a ∈ R

n, letφ(a) denote the vector
(

φ1(a1), . . . ,φn(an)
)

.
Letφ ◦A =

{

φ(a) : a ∈ A
}

. Then,

Rn(φ ◦A) ≤ ρRn(A).
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Lemma 3.3 [Lemma 26.6 of Shalev-Shwartz and Ben-David (2014)]. For anyA ⊂ R
n, scale

c ∈ R, and vectora0 ∈ R
n, we have

Rn

({

ca+ a0 | a ∈ A
})

≤ |c|Rn(A).

Lemma 3.4.For anyA,B ⊂ R
n, we have

Rn(A +B) ≤ Rn(A) + Rn(B).

HereA+B =
{

a+ b | a ∈ A, b ∈ B
}

.

Lemma 3.5 [Lemma B.3 of E et al. (2019)]. Let FQ =
{

f(x;θ) | ‖θ‖P ≤ Q
}

be the set of
two-layer networks with path-norm bounded byQ; then we have

Rn(FQ ◦ S) ≤ 2Q

√

2 ln(2d)
n

.

Lemma 3.6[Vector valued Rademacher complexity (Maurer, 2016)]. LetX be any set,(x1, . . . ,xn) ∈
X n, let F be a class of functionsf : X → ℓ2, and lethi : ℓ2 → R have Lipschitz norm Lip,
whereℓ2 denote the Hilbert space of square summable sequences of real numbers. Then

E

[

sup
f∈F

n
∑

i=1

ξihi

(

f(xi)
)

]

≤
√

2 Lip · E
[

sup
f∈F

n
∑

i=1

d
∑

k=1

ξikfk(xi)

]

, (16)

whereξik is an independent doubly indexed Rademacher sequence according to probability
distributionP[ξik = −1] = P[ξik = 1] = 1/2 andfk(xi) is thekth component off(xi).

Lemma 3.7.LetS =
{

x1,x2, . . . ,xn

}

.
{

y′
i

}n

i=1
denotes the gradient information, wherey′

i ∈
R

d ∀i ∈ [n].

F
′
Q,j =

{

∇jf(x;θ) | ‖θ‖P ≤ Q
}

, j = 1, . . . , d, F
′
Q = Πd

j=1F
′
Q,j .

Defineg : X → ℓ2, g(x;θ) =
(

∂1f(x;θ), ∂2f(x;θ), . . . , ∂df(x;θ)
)T

and ℓ̃j : ℓ2 → R,

ℓ̃j(z) = ‖z − y′
j‖2 for eachj ∈

{

1, 2, . . . , n
}

, whereℓ2 denote the Hilbert space of square

summable sequences of real numbers. Note thatℓ̃j is 1-Lipschitz function; then we have

E

[

sup
‖θ‖P≤Q

n
∑

i=1

ξiℓ̃i
(

g(xi;θ)
)

]

≤
√

2 · E
[

sup
‖θ‖P≤Q

n
∑

i=1

d
∑

k=1

ξikgk(xi;θ)

]

,

wheregk(xi;θ) is thekth component ofg(xi;θ). Moreover, denotẽℓ = (ℓ̃1, ℓ̃2, . . . , ℓ̃n); we
have

Rn(ℓ̃ ◦ F
′
Q ◦ S) ≤ 2

√
2Qd

√

2 ln(2d)
n

.

Proof. Without loss of generality, let‖wj‖1 = 1, ∀j = {1, . . . ,m}. Applying Lemma 3.6, we
immediately obtain
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Rn(ℓ̃ ◦ F
′
Q ◦ S) = 1

n
Eξ

[

sup
‖θ‖P≤Q

n
∑

i=1

ξi
∥

∥g(xi;θ)− y′
i

∥

∥

2

]

≤
√

2
n

Eξ

[

sup
‖θ‖P≤Q

d
∑

k=1

n
∑

i=1

ξikgk(xi;θ)

]

=

√
2
n

Eξ



 sup
‖θ‖P≤Q

d
∑

k=1

n
∑

i=1

ξik

m
∑

j=1

ajσ
′
(

wT
j xi

)

wjk





=

√
2
n

Eξ



 sup
‖θ‖P≤Q

m
∑

j=1

aj‖wj‖1

d
∑

k=1

n
∑

i=1

ξikσ
′
(

wT
j xi

)

wjk





≤
√

2
n

Eξ



 sup
‖θ‖P≤Q

m
∑

j=1

|aj |‖wj‖1 sup
‖v‖1=1

∣

∣

∣

∣

∣

d
∑

k=1

n
∑

i=1

ξikσ
′
(

vTxi

)

vk

∣

∣

∣

∣

∣





≤
√

2Q
n

Eξ

[

sup
‖v‖1=1

∣

∣

∣

∣

∣

d
∑

k=1

n
∑

i=1

ξikσ
′
(

vTxi

)

vk

∣

∣

∣

∣

∣

]

=

√
2Q
n

Eη

[

sup
‖v‖1=1

∣

∣

∣

∣

∣

〈

n
∑

i=1

ηiσ
′
(

vTxi

)

,v
〉

∣

∣

∣

∣

∣

]

(

ηi = (ξi1, ξi2, . . . , ξid)
)

≤
√

2Q
n

Eη

[

sup
‖v‖1=1

∥

∥

∥

∥

∥

n
∑

i=1

ηiσ
′
(

vTxi

)

∥

∥

∥

∥

∥

1

]

≤
√

2Qd

n
Eξ

[

sup
‖v‖1≤1

n
∑

i=1

ξiσ
′
(

vTxi

)

]

,

whereξ ∈ [−1, 1] andη ∈ [−1, 1]d. Due to the symmetry, we have

Eξ

[

sup
‖u‖1≤1

∣

∣

∣

∣

∣

n
∑

i=1

ξiσ
′
(

uTxi

)

∣

∣

∣

∣

∣

]

≤ Eξ

[

sup
‖u‖1≤1

n
∑

i=1

ξiσ
′
(

uTxi

)

+ sup
‖u‖1≤1

n
∑

i=1

−ξiσ
′
(

uTxi

)

]

≤ 2Eξ

[

sup
‖u‖1≤1

n
∑

i=1

ξiσ
′
(

uTxi

)

]

.

Then applying Lemma 3.2 and Lemma 3.1, we obtain

Rn(ℓ̃ ◦ F
′
Q ◦ S) ≤ 2

√
2Qd

√

2 ln(2d)
n

.

Theorem 3.2(Shalev-Shwartz and Ben-David, 2014). Assume that for all samplesx andh in
hypothesis spaceH , the loss functionℓ : H × Y → R satisfies|ℓ(h(x), y)| ≤ B. Then, with
probability of at least1− δ, for all h ∈ H , andS = {x1,x2, . . . ,xn},
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∣

∣

∣

∣

∣

1
n

n
∑

i=1

ℓ
(

h(xi), yi
)

− Ex,y

[

ℓ(h(x), y)
]

∣

∣

∣

∣

∣

≤ 2ES

[

Rn(ℓ ◦ H ◦ S)
]

+B

√

2 ln(2/δ)
n

. (17)

We are now ready to present the main results of this section.

Theorem 3.3.If Assumption 2.1 holds, then with probability at least1− δ we have,

sup
‖θ‖P≤Q

∣

∣

∣
L(θ) + βL′(θ)−

(

Ln(θ) + βL′
n(θ)

)

∣

∣

∣

≤ 4
(

1+
√

2βd
)

Q

√

2 ln(2d)
n

+

(

1
2
+ β(Q+D)

)

√

2 ln(2/δ)
n

.

(18)

Proof. Using the triangular inequality, we have

sup
‖θ‖P≤Q

∣

∣

∣
L(θ) + βL′(θ)−

(

Ln(θ) + βL′
n(θ)

)

∣

∣

∣

≤ sup
‖θ‖P≤Q

∣

∣L(θ)− Ln(θ)
∣

∣+ sup
‖θ‖P≤Q

β
∣

∣L′(θ)− L′
n(θ)

∣

∣.
(19)

DefineHQ =
{

ℓ
(

f(x;θ), y
) ∣

∣ f(x;θ) ∈ FQ

}

andH ′
Q =

{

ℓ̃
(

∇f(x;θ),y′
)

| f(x;θ) ∈

FQ

}

, whereℓ
(

f(x;θ), y
)

= (1/2)
(

f(x;θ)− y
)2

andℓ̃
(

∇f(x;θ),y′
)

=
∥

∥∇f(x;θ)− y′
∥

∥

2
.

Note thatf(x;θ) ∈ [0, 1], ℓ(·, y) is 1-Lipschitz continuous,

1
2

∣

∣

∣

(

f(xi;θf )− yi
)2 −

(

g(xi;θg)− yi
)2
∣

∣

∣

=
1
2
|f(xi;θf )− g(xi;θg)| · |f(xi;θf ) + g(xi;θg)− 2yi| ≤ |f(xi;θf )− g(xi;θg)|.

Following Lemma 3.5 and Lemma 3.2, we have

Rn(HQ) =
1
n
Eξ

[

sup
f∈FQ

n
∑

i=1

ξi
1
2
|f(xi;θ)− yi|2

]

≤ 2Q

√

2 ln(2d)
n

, (20)

andℓ is bounded,ℓ
(

f(x;θ), y
)

= (1/2)(f(x;θ) − y)2 ≤ 1/2. Hence applying Theorem 3.2,
we can obtain,

sup
‖θ‖P≤Q

∣

∣L(θ)− Ln(θ)
∣

∣ ≤ 4Q

√

2 ln(2d)
n

+
1
2

√

2 ln(2/δ)
n

. (21)

Similarly, ℓ̃
(

∇f(x;θ),y′
)

=
∥

∥∇f(x;θ)− y′
∥

∥

2
is 1-Lipschitz with respect to∇f(x;θ),

∣

∣

∣

∣

∥

∥∇f(xi;θf )− y′
i

∥

∥

2
−
∥

∥∇g(xi;θg)− y′
i

∥

∥

2

∣

∣

∣

∣

≤
∥

∥∇f(xi;θf )−∇g(xi;θg)
∥

∥

2
.

Let ℓ̃ = (ℓ̃1, . . . , ℓ̃n), in which ℓ̃i(·) =
∥

∥ · −y′
i

∥

∥

2
for i = 1, . . . , n. We can obtain the estimation

of Rn(H
′
Q) directly from Lemma 3.7,

Rn(H
′
Q) =

1
n
Eξ

[

sup
f∈FQ

n
∑

i=1

ξi

∥

∥

∥
∇f(xi;θ)− y′

i

∥

∥

∥

2

]

≤ 2
√

2Qd

√

2 ln(2d)
n

, (22)
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and ℓ̃
(

∇f(x;θ),y′
)

is bounded since we assume that the gradient of the objectivefunction is
bounded by a positive constantD:

f(x;θ) =
m
∑

k=1

akσ
(

wT
k x
)

,

∥

∥∇f(x;θ)
∥

∥

2

2
=

∥

∥

∥

∥

∥

m
∑

k=1

akσ
′wT

k

∥

∥

∥

∥

∥

2

2

≤
∥

∥

∥

∥

∥

m
∑

k=1

akσ
′wT

k

∥

∥

∥

∥

∥

2

1

≤
∥

∥

∥

∥

∥

m
∑

k=1

akw
T
k

∥

∥

∥

∥

∥

2

1

≤
∥

∥θf

∥

∥

2

P
, (23)

ℓ̃
(

∇f(x;θ),y′
)

=
∥

∥∇f(x;θ)− y′
∥

∥

2
≤
∥

∥∇f(x;θ)
∥

∥

2
+
∥

∥y′
∥

∥ ≤
∥

∥θf

∥

∥

P
+D ≤ Q+D.

(24)

Thus,

sup
‖θ‖P≤Q

∣

∣L′(θ)− L′
n(θ)

∣

∣ ≤ 4
√

2Qd

√

2 ln(2d)
n

+ (Q+D)

√

2 ln(2/δ)
n

. (25)

The desired result follows by plugging Eqs. (21) and (25) into Eq. (19), and the proof is
completed.

We next present a posterior generalization bound by relaxing such restrictions.

Theorem 3.4(A posterior generalization bound). Assume that Assumption 2.1 holds, then for
anyδ > 0, with probability at least1− δ over the choice of the training setS, we have, for any
two-layer networkfm(·,θ),

∣

∣

∣

∣

L(θ) + βL′(θ)−
(

Ln(θ) + βL′
n(θ)

)

∣

∣

∣

∣

≤ 4
(

1+
√

2βd
)(

‖θ‖P + 1
)

√

2 ln(2d)
n

+

(

1
2
+ β

(

‖θ‖P + 1+D
)

)

√

√

√

√

2 ln
(

2c
(

‖θ‖P + 1
)2
/δ
)

n
,

(26)

wherec =
∞
∑

k=1
1/k2.

Proof. Consider the decompositionF = ∪∞
k=1Fk, whereFk =

{

f(x;θ) | ‖θ‖P ≤ k
}

. Let
δk = δ/(ck2) wherec =

∑∞
k=1 1/k2. According to Theorem 3.3, if we fixk in advance, then

with probability at least 1− δk over the choice ofS, we have

∣

∣

∣
L(θ) + βL′(θ)−

(

Ln(θ) + βL′
n(θ)

)

∣

∣

∣

≤ 4
(

1+
√

2βd
)

k

√

2 ln(2d)
n

+

(

1
2
+ β

(

k +D
)

)

√

2 ln(2/δk)
n

.
(27)

ThereforeP
(

{inequality (27) unholds}
)

≤
∑∞

k=1 δk =: δ, namely,P
(

{inequality (27) holds for
all k}

)

≥ 1−δ. In other words, with probability at least 1−δ, the inequality (27) holds for allk.
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Given an arbitrary set of parametersθ, denotek0 = min
{

k | ‖θ‖P ≤ k
}

, thenk0 ≤
‖θ‖P + 1. Inequality (27) implies that

∣

∣

∣
L(θ) + βL′(θ)−

(

Ln(θ) + βL′
n(θ)

)

∣

∣

∣

≤ 4
(

1+
√

2βd
)

k0

√

2 ln(2d)
n

+

(

1
2
+ β

(

k0 +D
)

)

√

2 ln(2ck2
0/δ)

n
.

≤ 4
(

1+
√

2βd
)(

‖θ‖P + 1
)

√

2 ln(2d)
n

+

(

1
2
+ β

(

‖θ‖P + 1+D
)

)

√

√

√

√

2 ln
(

2c
(

‖θ‖P + 1
)2
/δ
)

n
.

This completes the proof.

We note that the generalization gap is bounded roughly by

d‖θ‖P

√

ln(2d)
n

+ ‖θ‖P

ln(‖θ‖P)√
n

,

which shares a similar convergence rate with the method without gradient information (E et al.,
2019), indicating that the gradient-enhanced method wouldnot destroy the original function
approximation algorithm.

3.2 An Upper Bound for the Empirical Risk

Recalling the approximation property, there exists a two-layer neural networkf(·; θ̃) whose
path-norm is independent of the network width, while achieving the optimal approximation error.
Furthermore, this path-norm can also be used to bound the generalization gap (Theorem 3.4). In
this section, we want to estimate the gradient regularized risk of θ̃. To this end, we first assume
that the norm of the gradient of the target function can be bounded by a constantD.

Let γ̂p(f) = max{1,γp(f)}, whered is the dimension of input data.

Theorem 3.5.Let θ̃ be the network mentioned in Theorem 3.1; then with probability at least
1− δ, we have

Jn,β(θ̃) .
γ2

2(f
∗)

m
+β

1√
m
γ2(f

∗)+βγ̂2(f
∗)
(

γ̂2(f
∗)+d

)

√

2 ln(2d)
n

+βγ̂2(f
∗)

√

ln(2c/δ)
n

,

(28)
where

Jn,β(θ̃) = Ln(θ̃) + βL′
n(θ̃) and c =

∞
∑

k=1

1
k2

.

Proof. According to the definition of a regularized model, the properties that

∥

∥θ̃
∥

∥

P
≤ 2γ2(f

∗), L(θ̃) ≤ 3γ2
2(f

∗)

m
,
(

L′(θ̃)
)2 ≤ Ex

[

∥

∥∇f(x)−∇f(x; θ̃)
∥

∥

2

2

]

≤ 7γ2
2(f

∗)

m
,
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and the posteriori error bound, the regularized risk ofθ̃ satisfies

Jn,β(θ̃) = Ln(θ̃) + βL′
n(θ̃)

≤ L(θ̃) + βL′(θ̃) + 4
(

1+
√

2βd
)(∥

∥θ̃
∥

∥

P
+
)

√

2 ln(2d)
n

+

(

1
2
+ β

(
∥

∥θ̃
∥

∥

P
+ 1+D

)

)

√

√

√

√

2 ln
(

2c
(∥

∥θ̃
∥

∥

P
+ 1
)2
/δ
)

n

≤ L(θ̃) + βL′(θ̃) + 4
(

1+
√

2βd
)(

2γ2(f
∗) + 1

)

√

2 ln(2d)
n

(29)

+

(

1
2
+ β

(

2γ2(f
∗) + 1+D

)

)

√

√

√

√

2 ln
(

2c
(

1+ 2γ2(f∗)
)2
/δ
)

n
. (30)

The last term can be simplified by using
√
a+ b ≤ √

a +
√
b andln(a) ≤ a for a ≥ 0, b ≥ 0.

Thus we have
√

2 ln
(

2c
(

1+ 2γ2(f∗)
)2
/δ
)

=

√

2 ln(2c/δ) + 2 ln
(

1+ 2γ2(f∗)
)2

≤
√

2 ln(2c/δ) +
√

2 ln
(

1+ 2γ2(f∗)
)2

≤
√

2 ln(2c/δ) +
√

2 ln
(

3γ̂2(f∗)
)2

≤
√

2 ln(2c/δ) + 3
√

2 γ̂2(f
∗).

Plugging it into Eq. (30), we obtain

Jn,β(θ̃) ≤ L(θ̃) + βL′(θ̃) + 4
(

1+
√

2βd
)(

2γ2(f
∗) + 1

)

√

2 ln(2d)
n

+

(

1
2
+ β

(

2γ2(f
∗) + 1+D

)

)

(
√

2 ln(2c/δ)
n

+ 3

√

2
n
γ̂2(f

∗)

)

.

Thus after some simplifications, we have

Jn,β(θ̃) .
γ2

2(f
∗)

m
+ β

1√
m
γ2(f

∗) + βγ̂2(f
∗)
(

γ̂2(f
∗) + d

)

√

2 ln(2d)
n

+ βγ̂2(f
∗)

√

ln(2c/δ)
n

.

This completes the proof.

According to the definition ofθn,β, we haveJn,β(θn,β) ≤ Jn,β(θ̃). Thus the above theo-
rem gives an upper bound forJn,β(θn,β). Such an upper bound for the empirical risk verifies
the feasibility of our method that we can obtain a good approximation by increasing the number
of neurons in the hidden layer and samples.

4. APPLICATIONS TO UNCERTAINTY QUANTIFICATION

We now consider the application of the gradient-enhanced DNN approach for uncertainty quan-
tification.
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4.1 Gradient-Enhanced Uncertainty Quantification

In complex engineering systems, mathematical models can only serve as simplified and reduced
representations of true physics, and the effect of some uncertainties, such as boundary/initial
conditions and parameter values, can be significant. Uncertainty quantification (UQ) aims to
develop numerical tools that can accurately predict quantities of interest (QoI) and facilitate
the quantitative validation of the simulation model. Generally, we use differential equations to
model complex systems on a domainΩ, in which the uncertainty sources are represented byΞ.
The solutionu is governed by the PDEs

L
(

x,Ξ;u(x,Ξ)
)

= 0, x ∈ Ω,

B
(

x,Ξ;u(x,Ξ)
)

= 0, x ∈ ∂Ω,
(31)

whereL andB are differential and boundary operators, respectively. Our goal is to approx-
imate the QoIu(x0,Ξ) for some fixed spatial locationx0. To reduce the notation, we simply
write u(Ξ). In many applications, the dimension of random variableΞ is very high and can be
characterized by ad-dimensional random variable. Hence DNNs are good candidates for such
problems.

We consider inclusion of gradient measurements with respect to random variablesΞ, i.e.,
∂u/∂Ξk, k = 1, 2, . . . , d. The gradient measurements can usually be obtained in a relatively
inexpensive way via the adjoint method (Luchini and Bottaro, 2014).

4.2 Numerical Examples

We compare the performance between original neural networks without gradient input and gra-
dient-enhanced neural networks. For simplicity, we say that a method isX% gradient-enhanced
if X% of samples contain derivative information with respect toall dimensions. In our tests,
each neural network contains two layers with 1000 hidden neurons. The hyperparameterβ,
which is used to balance the two part losses introduced by thefunction values and derivative
information, is set to 10. We initialize all trainable parameters using the Glorot normal scheme.
For the training procedure, we use the Adam optimizer. To quantitatively evaluate the accuracy
of the numerical solution, we shall consider the relativeL2 error ‖uθ − u‖2/‖u‖2 , whereu
anduθ denote the ground truth and predicted solution. All numerical tests are implemented in
PyTorch.

4.2.1 Function Approximations

Before applying the gradient-enhanced method to uncertainty quantification, we first demon-
strate the effectiveness of our approach in approximating high-dimensional functions. More pre-
cisely, we consider the Gaussian function,

f1(x) = exp

(

−
d
∑

i=1

x2
i

)

, x = (x1, x2, . . . , xd) ∈ [−1, 1]d,

and the polynomial function,

f2(x) =

d/2
∑

i=1

xixi+1, x = (x1, x2, . . . , xd) ∈ [−1, 1]d.
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For these two test functions, we assume that samples{xi}ni=1 are uniformly distributed in
[−1, 1]d, yi is the observation of target function atxi, andy′

i is the corresponding derivative.
Thus {xi, yi}ni=1 compose the training data for the original DNN.{xi, yi,y

′
i}ni=1 compose

the training data for 100% gradient-enhanced DNN. And{xi, yi}ni=1 ∪ {x̂j , ŷ
′
j}mj=1 compose

the training data for 20% gradient-enhanced DNN wherem is the rounding-off of 20%n and
{x̂j}mj=1 is randomly chosen from{xi}ni=1. The learning rate for the Adam optimizer is set to
0.01 with 20% decay each 500 steps.

For Gaussian functionf1(x), we consider the cases thatd = 2, 4, and 8. The relativeL2

errors against the number of samplesn are presented in top row of Fig. 1. The use of gradient
information can indeed improve the accuracy, and furthermore, the more gradient information is
included, the better accuracy is obtained. Moreover, we investigate the loss functions of different
models ford = 2 with 400 samples,d = 4 with 1600 samples, andd = 8 with 3200 samples,
which are depicted in the bottom row of Fig. 1.

For the polynomial functionf2(x), we set the dimension to 4, 8, and 16. Similar to the Gaus-
sian function, we present the relativeL2 errors for different dimensions in Fig. 2, which again
shows that the gradient information regularized term can greatly enhance the approximation ac-
curacy. The loss functions ford = 4 with 400 samples andd = 8 and 16 with 3200 samples
are provided in the bottom row of Fig. 2. It can be observed that the loss function of gradient-
enhanced methods may be smaller than the original DNN as the iteration number increases,
verifying the strength of the gradient-enhanced methods.

4.2.2 Elliptic PDE with Random Inputs

We now consider the following stochastic elliptic PDE problem,
{

−∇ · (a(x,ω)∇u(x,ω)) = f(x,ω) in D × Ω,

u(x,ω) = 0 on ∂D × Ω,
(32)

FIG. 1: Example 1. Approximation off1(x). Top: The relativeL2 errors against the number of samples.
Bottom: The loss functions against increasing epochs with the number of samples 400 ford = 2, 1600 for
d = 4, and 3200 ford = 8.
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FIG. 2: Example 2. Approximation off2(x). Top: The relativeL2 errors against the number of samples.
Bottom: The loss functions against increasing epochs with the number of samples 400 for dim= 4 and
3200 for dim= 8 and 16.

whereD = [0, 1]2,x = (x1, x2) is a spatial coordinate andf(x,ω) is a deterministic force
term f(x,ω) = cos(x1) sin(x2). The random diffusion coefficienta(x,ω) = ad(x,ω) with
one-dimensional spatial dependence takes the form (Babukaet al., 2010),

log
(

ad(x,ω)− 0.5
)

= 1+ Y1(ω)

(√
πL

2

)1/2

+

d
∑

k=2

ζkφk(x)Yk(ω), (33)

where

ζk := (
√
πL)1/2 exp

(

−
(

⌊k
2⌋πL

)2

8

)

if k > 1 andL =
1
12

,

andφk(x) only depends on the first component ofx,

φk(x) :=

{

sin
(

⌊k
2⌋πx1

)

if k even,

cos
(

⌊k
2⌋πx1

)

if k odd.
(34)

Here{Yk(ω)}dk=1 are independent random variables uniformly distributed inthe interval[−1, 1].
In the following we approximate the QoIq defined byq(ω) = u((0.5, 0.5),ω), which is the
solution of Eq. (32) at locationx = (0.5, 0.5). DenoteΨ(ω) = (Y1(ω), . . . , Yd(ω)). The
derivativesdq/dΨ = ∂u(x,ω)/∂Ψ are computed by the adjoint sensitivity method. Both for-
ward and adjoint solvers are implemented in the finite element method (FEM) project FEniCS
(Logg et al., 2012). In numerical tests,{Ψ(ωi)}ni=1 are generated from a uniform distribution in
[−1, 1]d, and we solve the forward PDE 320 times ford = 5 and 1600 times ford = 10. Notice
that each partial derivative leads to an adjoint equation; then the number of adjoint equations
needed to solve isd times that of the forward equations. It is worth mentioning that the cost of
generating derivatives ofq(ω) in elliptic PDE (32) is negligible since they share the same stiff
matrix with q.
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After obtaining the function values as well as the corresponding gradient information, we
apply the original DNN, 20% gradient-enhanced DNN, and 100%gradient-enhanced DNN to
approximate the QoIq(ω). The learning rate for the Adam optimizer is 0.001 with half decay
each 1000 steps. The relativeL2 errors ford = 5 and 10 are presented at the top row of Fig. 3.
We also provide the loss functions of different models ford = 5 with the number of samples
320 andd = 10 with the number of samples 1600 in the bottom row of Fig. 3. All cases verify
that gradient-enhanced methods significantly outperform the original approach. We can achieve
the same accuracy using much fewer training samples.

5. CONCLUSION

We have proposed gradient-enhanced deep neural network (DNN) approximations for function
approximations and uncertainty quantification. In our approach, the gradient information is in-
cluded as a regularization term. For this approach, we present posterior estimates (by the two-
layer neural networks) similar to those in the path-norm regularized DNN approximations. We
also discuss the application of this approach to gradient-enhanced uncertainty quantification, and
numerical experiments show that the proposed approach can outperform the traditional DNN ap-
proach in many cases of interest. The discussion in this workis limited to supervised learning
where labeled data are available, and in our future work, we will consider applying this gradient-
enhanced idea to unsupervised learning where the physical equation is considered to yield the
loss function.
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FIG. 3: Example 3. Top: The relativeL2 errors against number of samples forN = 5, 10. Bottom: The
loss functions against increasing epochs ford = 5 with 320 samples andd = 10 with 1600 samples.
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