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We propose in this work the gradient-enhanced deep neural network (DNN) approach for func-
tion approximations and uncertainty quantification. More precisely, the proposed approach adopts
both the function evaluations and the associated gradient information to yield enhanced approxi-
mation accuracy. In particular, the gradient information is included as a reqularization term in the
gradient-enhanced DNN approach, for which we present posterior estimates (by the two-layer neu-
ral networks) similar to those in the path-norm reqularized DNN approximations. We also discuss
the application of this approach to gradient-enhanced uncertainty quantification, and present sev-
eral numerical experiments to show that the proposed approach can outperform the traditional DNN
approach in many cases of interest.

KEY WORDS: deep neural networks, two-layer neural network, Barron space, uncer-
tainty quantification

1. INTRODUCTION

In recent years, deep neural networks (DNNs) have beenyigeld for dealing with scientific
and engineering problems, such as function approximatiéret al., 2022; Schwab and Zech,
2019; Siegel and Xu, 2020), numerical partial differendéiquations (PDESs) (E and Yu, 2018;
Raissi et al., 2019; Sirignano and Spiliopoulos, 2018) genelassification (He et al., 2016; Lit-
jens et al., 2017), and uncertainty quantification (Mengl&archiadakis, 2020; Qin et al., 2021;
Yang et al., 2021), to name a few. Compared to traditiondktsoch as polynomials (DeVore
and Lorentz, 1993), radial basis functions (Majdisova akdl& 2017), and kernel methods
(Liu et al., 2020), one of the main advantages of DNNs is thetential approximation capac-
ity for high-dimensional problems. Unlike classic toolgkas polynomial approximations (for
which the relevant theoretical analysis results have besihstudied), the associated theoreti-
cal analysis for DNNs is still in its infancy. Among othersewnention the seminal works by
Barron (1993) and E et al. (2022) where the concept of “Baspate” was proposed, and some
approximation results for DNNs were presented.

In this work, we shall present the gradient-enhanced DNNaggh. More precisely, our
approach adopts both the function evaluations and the iassdggradient information. This
is similar to the classic Hermite-type interpolation. Ousimcontributions are summarized as
follows:
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74 Feng & Zeng

e We present the gradient-enhanced DNN approach, where ddégt information is in-
cluded as a regularization term.

e For the gradient-enhanced DNN approach, we present poséstimates (via a two-layer
neural network) similar to those in the path-norm regudiDNN approximations. More
precisely, we show that the posterior generalization eraorbe bounded by

In(2d)

In(||© @
ﬁ(dwm T+|e|y%>,

wheren is the number of training point§p || » is the path norm, and is the dimension.

e We discuss the application of our approach to gradient+erdthuncertainty quantifica-
tion and present several numerical experiments to showtibaradient-enhanced DNN
approach can outperform the traditional DNNs in many casagerest.

We remark that gradient-enhanced polynomial approximatitave been proposed for uncer-
tainty quantification (Guo et al., 2018; Jakeman et al., 2Q@1%t al., 2011; Lockwood and
Mavriplis, 2013; Peng et al., 2016). Under some circumsaraf uncertainty quantification,
the cost of calculating derivatives can be inexpensive, bygsolving adjoint equations. These
additional derivatives actually increase the existingadatormation, which may bring a better
approximation. On the other hand, there are already marmieggraenhanced methods based on
deep learning. Many researchers consider enhancing theegtavalue back-propagated by the
network to avoid the phenomenon of gradient vanishing odigrda explosion during training
(He et al., 2016; Schmidhuber and Hochreiter, 1997; Yan .et28P2). A gradient-enhanced
damage model was used in Zhuang et al. (2020) to ensure thgegedness of the bound-
ary value and yields mesh-independent results in compuattmethods. Some also regularize
the derivatives of the output of neural networks to imprdvwe &dversarial robustness and in-
terpretability (Ross and Doshi-Velez, 2018). In additiamgradient-enhanced physics-informed
neural network (PINN) was proposed to improve the accuradytaining efficiency of PINNs
in Yu et al. (2022), where the gradient information (i.eg #issociated adjoint equation) is in-
cluded to yield a modified PINN loss function. Different frahese methods, our method is data
driven, tackling the case that derivatives are given aloith function evaluations. Moreover,
theoretical analysis is provided to illustrate the fedsjband effectiveness of this method.

The rest of this paper is organized as follows. In Sectiones&t up the problem and present
some preliminaries. In Section 3 we present the error esbmain two-layer neural networks
for the gradient regularized approximation problem. Apgions to uncertainty quantification
are discussed in Section 4. Finally, we give some concludintarks in Section 5.

2. PRELIMINARIES

2.1 Problem Setup

We begin the discussion by considering function approxmnatvia DNNs with labeled data.
We consider the target functioft : R¢ — R, and we assume that the following data are avai-
lable: {x;,y;,y;}1,. Herey, andy] are the functional evaluations and gradient evaluations,

respectively. Namely,
{yl- = f (), i=1,...,n.

. Q)
yész*(:ci), i=1...,n.
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Gradient-Enhanced Deep Neural Network Approximations 75

For simplicity, we assume that the ddta,}; lie in 2" = [-1,1]¢ and 0< f* < 1. We shall
show our analysis results via a two-layer neural networkwfoich the nonlinear function can
be defined as

f(x;0) = Z aro(wi x), (2)
i=1
wherew;, € R%, 0 : R — R is a nonlinear activation function, ad= {(ay, ws)}, is the
unknown parameter. We define a truncated fornfi(@f; 6) through
T f(z;0) = max{min{ f(z;0), 1},0}.

By an abuse of notation, in the following we still ugér; ©) to denotel’ f (x; 0). For the training
{z;,y;:}1"_,, the population risk can be defined by

L(0) = Eq, [((f(2;0),y)]- 3)
The empirical risk with the training data yields

La(0) = = 3" 0(f(i:0), 1), (4)
=1

wherel(f(x),y) = (1/2)(f(x) — y)?. For the gradient information, we consider
L'(0) = Ea y [((Vf(2:0),/)], (5)

wherel(V f(z;0),y') = ||V f(z;0) — y'||, and||- ||q indicates the, norm of a vector. Simi-
larly, the empirical risk with the training dafac;, v;, y; }"_, yields

1~ - 2
L,(0) = = > [((Vf(2:;0),9))]" (6)
i=1
Moreover, the path-norm of the two-layer neural networkeafirted as
181l == > laxlllws]1. (7)
k=1

We are now ready to present the so-called gradient-enhddddapproach.

Definition 2.1 (Gradient-enhanced DNNs modeFor a two-layer neural network(-; ©) of
width m, the gradient regularized risk is defined as follows:

Jn.p(0) :=L,(0)+ B - L, (0).
The corresponding regularized estimator is defined as
0, = argminJ, g(0).

Note that the minimizers are not necessarily unique, @&ngd should be understood as any of
the minimizers.

The above approach can be viewed as an extension of theccldsainite interpolation
(Spitzbart, 1960; Wu, 1992), and is motivated by applicgatisuch as gradient-enhanced un-
certainty quantification (Guo et al., 2018; Jakeman et 8152 Li et al., 2011; Lockwood and
Mavriplis, 2013; Peng et al., 2016).

Volume 30, Issue 4, 2022



76 Feng & Zeng

2.2 Barron Space

We now provide a brief overview of Barron space (E etal., 2006tS* := {w € R? | ||w||1

= 1}. Let.7 be the Boreb-algebra or§?~! and letP(S?~*) be the collection of the probability
measures offS*~1,.7). Let Z(2") be the collection of functions that admit the following
integral representation:

f(x) = /Sdi1 a(w)c((w,:c))dﬂ'(w), Ve e 2, (8)

whererr € P(S?~1), anda(:) is a measurable function with respect(&f,.7). For anyf €
PA(Z") andp > 1, we define the following norm:

1/p
Volf)i= nf, ( L. |a<w>|ﬂdw<w>) , ©

where

o/ ={(am| s = [ atw)o(w.al)intw)}.

Definition 2.2 [Barron space (E et al., 2019)[he Barron space is defined as

B X) = {1 € B2 |y (f) < 0}
We next present several assumptions.
Assumption 2.1. Throughout the paper we assume that
e 2 =[-1,1%and0 < f* < 1.
e The derivative of *(x) is bounded by a consta.

e The activation functionv is scaling invariant, namelys(kz) = ko(z), and satisfies
lo(z)] < Cilz|,]0’| < C, and o’ is Lipschitz continuous with a positive constaiy
Specifically, we use rectified linear unit (ReLU), i.e(z) = maxXz, 0} as activation
function with constanf®; = C, = C3 = 1.

e In(2d) > 1, hered is the dimension of input data.

Proposition 2.1[Proposition of E et al. (2022)Let f € C(Z"), the space of continuous func-
tions onZ", and assume that satisfies

Y(f) = in / ]2 F(w)] dw < oo, (10)
f JRd

Wheref is the Fourier transform of an extension pto R%. Thenf admits an integral represen-
tation. Moreover,
Yo(f) < 2v(F) + 2V (0]l + 2| £(0)]. (11)

It is usually difficult to check condition (10). For furthenderstanding, we recall the fol-
lowing relationship of Barron space and more classical fioncspaces, which can be found in
E and Stephan (2021) and references therein for details.

Proposition 2.2[Theorem 3.1 of E and Stephan (2021)]f € H*(R?) for s > d/2 + 2, then
f € B(RY).
Proposition 2.2 states that every sufficient smooth funaidmits an integral representation.
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Gradient-Enhanced Deep Neural Network Approximations 77

3. ERROR ESTIMATES FOR THE GRADIENT-ENHANCED DNN APPROACH

In this section, we present the error estimates for the grasginhanced DNN approach. To this
aim, we first present the following approximation theorenhjcki combines the relationship
between Barron spaces and two-layer neural networks.

Theorem 3.1. For any f € %,(.2"), there exists a two-layer neural netwafk:; ©) of widthmn,
such that

3 2
B [(f(@) - f(2:8))7] < 220, (12

~ 2
£ [Vr(e) - Vst < DAL, (19
18], < 2va(h). (14)

Proof. Let (a,w) be the best representation ¢f i.e., v3(f) = Ex[|a(w)[?], and letU =
{w,}jL, beii.d. random variables drawn fron{-). Define

ful@) = =3 alwy)o((w;. 2)).

J=1

Then the derivative of with respect tac is
Za w;)0 wj, >)'w»T.
j 1

Let L}, = E, UfU(m) — f(:c)ﬂ L2 =, [HVfU(m) — Vf(:c)”ﬂ . Then we have
Eu[LY] = BoEy || fu (@) — ()]

= %EmEU { i(a(wj) o((w;, z)) f(az))) (i (a(w;) o((w;, x)) f(@))}

i=1

%Za ({uy, ) ~ f(x)

- %Ew Z Eew,; w; [(a(wj) o((w;,x)) — f(2)) (a(w;) o((w;, z)) — f(a:))}

=
_ %Eme (a(w) o((w,2)) - f())?]
< rEa [ (aw) o (w,)))

< BBy la(w)F[o((w.2) ]

< By [la(w)f] = S By [la(w)].
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Since|lw,|1 = 1 andz € [-1,1]¢, we have(w,,z) < (w;,xo) < ||w;|1 = 1 wherezo =
(@01, o2, - - -, Tog) @Ndxy; = sgn(w;; ), which implies the last inequality. Meanwhile,

|

Ey[L3] = E.Ey [||VfU(w) -Vf (w)||ﬂ

=E.Ey

=3 aw) o (. @)l ~ Vi)

= B,y [a(w) o' (w.2))w! ~ V(@)

< LB,y [||aw) o ((w, 2))w ]

< BBy [Ja(w)? [uw]E]

< T [la(w)P [wlf] = - Eay [Ja(w)?] = By [lo(w)?]

Denote the path-norm of; (x) by Ay ; we haveE[Ay] = v1(f) < va(f).

Define eventdy; = {LlU < w} E, = {L?] < /) } Ez = {Ay < 2va(f)}.

m m

Using Markov’s inequality, we have

P(E) =1-P ({L%, > 3vilf) }) sqo Bullyl o yedPm _ 2

m C3()/m T IA(f)/m B

— 7V2(f) EU[LZ] 'yz(f)z/m 7 6
=l <{L%’ = }) 2 2 T
P(Es) =1-P ({Ay > 2v5(f)}) > 1— Eyldv] _ | valf) _ 1

2v2(f) =7 2va(f) 2
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Therefore, lett, = E1 N E3, then

1
P(E]_ n Eg) > P(E]_) + P(Eg) —1= é
Hence,
1 6 1
P(ElﬂEgﬂEg) :P(E4QE2) ZP(E4)+P(E2) -1> 6 +? —-1= 4—2 > 0.
Thatis,E; N E, N E3 # @, which completes the proof. O

According to Theorem 3.1, for a function in Barron space, e use a two-layer neural net-
work to simultaneously approximate its function value ardwative. Next we will investigate
the posterior error estimation of the gradient-enhancetiode

3.1 A Posteriori Error Estimation

To give a posteriorierror estimation, we need to introduce the definition of tleel&@nacher
complexity and review some related conclusions.

Definition 3.1 [Rademacher complexity (Shalev-Shwartz and Ben-David4§0Let S =
{ml,wz, e ,wn} be n i.i.d samples, and let# o S be the set of all possible evaluations a
function f € .% can achieve on a sampfg namely,

Fo§={(f@).f(@2)....f(@a) | f € F}.

Let each component of random variaBlee i.i.d. according t®[¢; = 1] = P[§; = —1] = 1/2.
Then, the Rademacher complexity.&f with respect taS is defined as follows:

1

Zn(F 0 5) = Bty Lfélgz aif(mi)]- (15)

7 =1

Lemma 3.1[Lemma 26.11 of Shalev-Shwartz and Ben-David (2014} S = {:1:1, T, ...,
x, } be vectors ilR?, /4 = {x — (w,z) | [|w|1 < 1}. Then,

B( 30 5) < maxa] oy 220,

Lemma 3.2 [Lemma 26.9 of Shalev-Shwartz and Ben-David (201&)jr eachi € [n] =
{1, 2,.. .,n}, let ¢, : R — R be ap-Lipschitz continuous, namely, for all, 3 € R we have

|bi() — di(B)] < plax — B|. Fora € R", let p(a) denote the vectofdi(as), ..., bn(an)).
Letdp o A= {Pp(a):ac A}. Then,

R (b 0 A) < 0% (A).
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Lemma 3.3[Lemma 26.6 of Shalev-Shwartz and Ben-David (201Byf any A C R™, scale
c € R, and vectorag € R™, we have

Pn({ca+ag|acA}) <|dZ,(A).
Lemma 3.4.Forany A, B C R", we have
Zn(A+ B) < %n(A) + %Zn(D).

HereA+ B ={a+b|a€ Abec B}.

Lemma 3.5[Lemma B.3 of E et al. (2019)).et.Z, = {f(x;0) | [|6]|» < Q} be the set of
two-layer networks with path-norm bounded®ythen we have

21n(2d)

n

Fn(Fo o S) < 2Q

Lemma 3.6[Vector valued Rademacher complexity (Maurer, 201631 2" be any set(x;, ..., x,) €
2™, let # be a class of functiong : 2~ — ¢,, and leth; : £, — R have Lipschitz norm Lip,
where/, denote the Hilbert space of square summable sequenced ofueders. Then

n d
SUPZE,Z 7 m’L ‘| S ﬁLlpElsup Zzgnkfk ZT; ‘|1 (16)

feF i1 feF i1 k=1

where ;. is an independent doubly indexed Rademacher sequencedatgado probability
distributionP[&;, = —1] = P[&;, = 1] = 1/2and fi(x;) is thekth component off (x;).

Lemma3.7.LetS = {1, zp, ..., @, }. {y;}j:1 denotes the gradient information, wheygc
R4 Vi € [n].

Fo =AVif(@:0)]0]l» <Q}, j=1,....d FoH=N_17;

Defineg : 2 — (5, g(x;0) = (01f(;0),05f(w;0),...,0f (x:0))" andl; : £, — R,
lj(z) = ||z — yj|2 for eachj € {1,2,...,n}, where/, denote the Hilbert space of square
summable sequences of real numbers. Note@h’atl-Lipschitz function; then we have

sup sz,zkgk x;; 0 1,

n

E| sup Zajl(g(a:z,e))] <V2.E

HBHWSQ i=1 ”9HJ’<QZ 1 k=1
whereg, (x;; ©) is the kth component of(x;; 0). Moreover, denoté = ({1,0,...,0,); we
have
Rn(lo Flho8)<2V2Qd 2In(2d)
n

Proof. Without loss of generality, lgfw;|1 = 1, Vj = {1,...,m}. Applying Lemma 3.6, we
immediately obtain
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) 1
Rn(lo FHoS)==Eg| sup ZEﬂHg x;; 0 yi”zl

n lel»<Q =

< QEE sup Z Z Evzkgk (131, ‘|

n LIell2<Q 7 =1

:%EE sup ZZE@/@Z@G w 331 Wik

lelo<@izim =

“ | Saluglh 3 ol mw

lell><@ 5= — =

d n
Zzazko- 'U mz

V2
< —Eg| sup ZlagllleHl sup
J =1 k=1i=1

n H9||@ lvlli=1

B d n
<_\/§ Eg| sup ZZEikGl(vT%)vk

Llvlli=1| 321 =1

:@En sup <Zni0/(UTxi)7v>

lvl=1| V=

5 B n
SQEH sup Zﬂi“l(Usz)
no T elhet || 4 .
20Qd
S\/_Q sup ZEZ vla;)|,
lvlli<15Z

whereg € [—1, 1] andn € [-1, 1]¢. Due to the symmetry, we have

n

ZE’Z (u :1:1)

i=1

n

SEg[ sup ZE’Z (u :1:1)4— sup Z &0 u :1:1)

Eg| sup
lull1<1%27 lulli<1%2

llulli<1

<2Egl sup Zﬁl u azl) .

lwlli <152

Then applying Lemma 3.2 and Lemma 3.1, we obtain

(]

Theorem 3.2(Shalev-Shwartz and Ben-David, 201Assume that for all samplesand / in
hypothesis space?’, the loss functior : 77 x % — R satisfied?(h(x),y)| < B. Then, with
probability of at leastl — §, for all h € 7, andS = {x1, 2, ..., 2, },
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1 21n(2/8
S () ) — By [£0(a). )| < 2B [2, (00 0 5)] + By 22D ag)
i=1
We are now ready to present the main results of this section.
Theorem 3.3.1f Assumption 2.1 holds, then with probability at ledst 6 we have,
sup_|L(8) + BL'(8) ~ (La(8) + BL,(8))]
lelle<@
(18)
2In(2d 1 2In(2/5
<4(1+vV2pd)Q n( ) + <§ +B(Q + D)) %
Proof. Using the triangular inequality, we have
sup_[L(8) +BL'(8) — (La(0) + BL;w))\
lell»<Q
(19)
< |L(0) — L,(8)| + sup B|L'(©)— L, (0)].
||9\|m<Q lell»<Q

Define s, = {é(f(a: 0),) | f(=;0) € JQ} and.#, = {e(w(x-e) y') | f(x;0) €
ﬁQ},Wher%(f(w;G),y) = (1/2)( (z;0)— ) andé(Vf(a: 0), ) = HVf x; 0) y’Hz.
Note thatf(x; 0) € [0, 1], ¢(-, y) is 1-Lipschitz continuous,
1
S| (F@i05) = 1) = (9w 8,) — 1)’
1
= §|f($z'§ 05) —g(xi;0,)| - | f(xi;05) + g(xi50,) — 2u;| < [f(2i50)) — g(xi;0,4)]-
Following Lemma 3.5 and Lemma 3.2, we have

2In(2d)
ZED (o)

1 TP
r%n(‘%ﬂQ) - nEE [fi?@;azz|f(mzve) yz| ] < ZQ

and/ is bounded{(f(x; 0),y) = (1/2)(f(x;6) — y)* < 1/2. Hence applying Theorem 3.2,
we can obtain,

2In(2d) 1 [2In(2/5)
up  |L(0) — Ln(0)| < 4@/ S 4 2/ S 21
\|eﬁgp<Q| (0) (0)] <40\ ——+3 m (21)

Similarly, ¢ (Vf(az 0),y') =|V/f(x;0) Hz is 1-Lipschitz with respect t& f (x; 0),

<||Vf(zi;07) = Vg(a:;0

||vf(mi;ef)7yé||27Hv.g(xi;eg)iyé 2 9)“2'

Letl = (f1,...,0,), inwhichZ;(-) = || - —yi||, fori = 1,...,n. We can obtain the estimation
of %, () directly from Lemma 3.7,

Vf(xi;0)— y;

N —~ . 21n(2d)
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andE(Vf(az; 0), y’) is bounded since we assume that the gradient of the objduatition is
bounded by a positive constabt

f@:0) = apo(wjz),
k=1
2

<lesl%,  (23)
1

IV f(:0)|5 =

m m m
E akc’wg E akc’wg E akwg
k=1 k=1 k=1

UV S(@:0).y) = |[V(@:0) = y/||, < [V 0)], + [[y/] < [|04]] » + D < Q@+ D-
(24)

2 2
< <
2 1

Thus,

sup |L'(0) — L}, ()] < 4vV2Qd +(Q+D) % (25)

lollz<@

21n(2d)
n

The desired result follows by plugging Egs. (21) and (25) iBg. (19), and the proof is
completed. O

We next present a posterior generalization bound by relestiich restrictions.

Theorem 3.4(A posterior generalization bound)ssume that Assumption 2.1 holds, then for
anyd > 0, with probability at leastlL —  over the choice of the training s8t we have, for any
two-layer networkf,, (-, 8),

21n(2d)

L(8) + BL(0) — (Lu(8) + rsL;<e>>\ < 4(1+v2Bd) (|0 » + 1)

(26)
2111(20(”6”32 + 1)2/5)

+<%+B(I|ellg@+1+D)w - :

wherec = Y 1/k2.
k=1

Proof. Consider the decompositio = U2 .7, where.Z, = {f(x;0) | [|0]|» < k}. Let
8k = 8/(ck?) wherec = Y77, 1/k?. According to Theorem 3.3, if we fik in advance, then
with probability at least 1- 5, over the choice of, we have

|L(8) + BL'(8) — (Lu(8) + BL1,(8))|

< 4(1+ \/éﬁd)k ZlnT(Zd) + (% + B(kJrD)) 2111(2/6;@)'

n

(27)

ThereforeP({inequality (27) unholdg) < 377 ; §; =: 5, namelyP({inequality (27) holds for
all k}) > 1-45. In other words, with probability at least-15, the inequality (27) holds for ak.
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Given an arbitrary set of parameteds denoteko = min{k | |0]» < k}, thenky <
6]l » + 1. Inequality (27) implies that

|L(8) + BL'(8) — (Lu(8) + BL,(8))|

< 4(1+ V2Bd)ko ZlnéZd) T (% Bkt D)) 2In(2ck/8)

n

<41+ V2pd)([6]» + 1) ZlnT(Zd)

+ (% + B(|9|y+1+D))\l 21“(20(”9”9’ +1) /6).

n

This completes the proof. O
We note that the generalization gap is bounded roughly by

In(2d) In(||0]| )
d||®]| » e + HGH‘@T

which shares a similar convergence rate with the methodwithradient information (E et al.,
2019), indicating that the gradient-enhanced method waolddestroy the original function
approximation algorithm.

)

3.2 An Upper Bound for the Empirical Risk

Recalling the approximation property, there exists a tayel neural networkf(-; 8) whose
path-norm is independent of the network width, while acimnig¥he optimal approximation error.
Furthermore, this path-norm can also be used to bound trergeration gap (Theorem 3.4). In
this section, we want to estimate the gradient regularibdaf 8. To this end, we first assume
that the norm of the gradient of the target function can benbed by a constard.

Lety,(f) = max{1,v,(f)}, whered is the dimension of input data.

Theorem 3.5.Let © be the network mentioned in Theorem 3.1; then with probtsiali least
1- 5, we have

0 16 n n(2c
1@ LD gty ) (12t + ) 22D 4 ) 2L

(28)

where

Jup(8) = L,(8) + BL,(®) and c=3 k_lz
k=1

Proof. According to the definition of a regularized model, the pmtigs that

3v5(/*)

m

A ~ 2( f£x*
C(T(0))° < B [[|Vf(@) - Vi 0)[)5] < A

m

18]], < 2va(f*), L(®) <
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and the posteriori error bound, the regularized rise shtisfies
Tnp(0) = Ln(0) + BL,(6)
21n(2d)

n

: (%Hs(HéHWHDN 21 (20(181., + 5)

n

< L(0) + BL'(8) + 4(1+ v28d) (||6]| , +)

< L(0) + BL'(0) + 4(1+ V2Bd) (2y2(f*) + 1) ZIHT(ZCZ) (29)

21n(2c(1+ 2va( f*))z/é)

n

- <% +B(2va(f") +1+ D))J (30)

The last term can be simplified by using: + b < v/a + vb andln(a) < a fora > 0,b > 0.
Thus we have

\/Zln(2c(1 + 2y2(f*))2/5) - \/2111(26/5) +2In(1 4 2y4(f*))°

< \/2In(2¢/8) + \/2111(1 + 2Y2(f*))2

< \/2I(2e/8) + /20 (372(1"))?
< /2In(2¢/8) + 3V292(f*).
Plugging it into Eq. (30), we obtain

Jnp(8) < L(0) + BL'(0) + 4(1+ V2Bd) (2y2(f*) + 1) 21n7§2d)

+ (% +B(2va(f*) + 1+ D)> O/@Jr 3\/5?2“*))'

Thus after some simplifications, we have

0 (S 1 21n(2d In(2¢/8
s ©) 5 D 4 () 4 77 () + )y 22D gy 2L,
This completes the proof. O

According to the definition 08,, g, we haveJ, 3(6,.3) < Jn,@(é). Thus the above theo-
rem gives an upper bound fdf, g (6,, g). Such an upper bound for the empirical risk verifies
the feasibility of our method that we can obtain a good apijpnaiion by increasing the number
of neurons in the hidden layer and samples.

4. APPLICATIONS TO UNCERTAINTY QUANTIFICATION

We now consider the application of the gradient-enhancell @pproach for uncertainty quan-
tification.
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4.1 Gradient-Enhanced Uncertainty Quantification

In complex engineering systems, mathematical models clgrserve as simplified and reduced
representations of true physics, and the effect of somertaicges, such as boundary/initial
conditions and parameter values, can be significant. Usiogytquantification (UQ) aims to

develop numerical tools that can accurately predict gtieatof interest (Qol) and facilitate

the quantitative validation of the simulation model. Getlgr we use differential equations to
model complex systems on a domé&lnin which the uncertainty sources are represented.by
The solutionu is governed by the PDEs

X(m,E;u(m,E)) =0, x €,
(31)
%(az, = u(e, E)) =0, x € 09,

where . and % are differential and boundary operators, respectively. gual is to approx-
imate the Qolu(xo, Z) for some fixed spatial locatiom. To reduce the notation, we simply
write «(Z). In many applications, the dimension of random variables very high and can be
characterized by d-dimensional random variable. Hence DNNs are good careidatr such
problems.

We consider inclusion of gradient measurements with réspe@andom variableg, i.e.,
Ou/O0Z, k = 1,2,...,d. The gradient measurements can usually be obtained in éavedjat
inexpensive way via the adjoint method (Luchini and Bott2@il4).

4.2 Numerical Examples

We compare the performance between original neural nesawitkout gradient input and gra-
dient-enhanced neural networks. For simplicity, we sayathaethod isX % gradient-enhanced
if X% of samples contain derivative information with respecaliodimensions. In our tests,
each neural network contains two layers with 1000 hidderraress The hyperparametér,
which is used to balance the two part losses introduced byuthetion values and derivative
information, is set to 10. We initialize all trainable paraters using the Glorot normal scheme.
For the training procedure, we use the Adam optimizer. Togiadively evaluate the accuracy
of the numerical solution, we shall consider the relathfeerror ||ug — u|2/|ul2 , whereu
andug denote the ground truth and predicted solution. All nunsdriests are implemented in
PyTorch.

4.2.1 Function Approximations

Before applying the gradient-enhanced method to unceytaimantification, we first demon-
strate the effectiveness of our approach in approximatigig-tlimensional functions. More pre-
cisely, we consider the Gaussian function,

d
fi(x) = exp (— fo), x = (21,72, ...,1q) € [-1,1]%,
i=1

and the polynomial function,

/2

fZ(m) = inxi-i-la = ('rla L2, ... ,Id) € [715 1]d
i=1
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For these two test functions, we assume that samfpes;’ , are uniformly distributed in
[—1,1]¢, y; is the observation of target function af, andy/ is the corresponding derivative.
Thus {x;,y;}"_, compose the training data for the original DNR;, v;, y;}!, compose
the training data for 100% gradient-enhanced DNN. And, y;}7_; U {£;, 9}}].,; compose
the training data for 20% gradient-enhanced DNN wherés the rounding-off of 20% and
{z;}72, is randomly chosen fronfz; }'_;. The learning rate for the Adam optimizer is set to
0.01 with 20% decay each 500 steps.

For Gaussian functiorfy (), we consider the cases that= 2, 4, and 8. The relativé?
errors against the number of sampieare presented in top row of Fig. 1. The use of gradient
information can indeed improve the accuracy, and furtheentbe more gradient information is
included, the better accuracy is obtained. Moreover, westigate the loss functions of different
models ford = 2 with 400 samples] = 4 with 1600 samples, anél = 8 with 3200 samples,
which are depicted in the bottom row of Fig. 1.

For the polynomial functiorf,(x), we set the dimension to 4, 8, and 16. Similar to the Gaus-
sian function, we present the relativ& errors for different dimensions in Fig. 2, which again
shows that the gradient information regularized term caatly enhance the approximation ac-
curacy. The loss functions fat = 4 with 400 samples and = 8 and 16 with 3200 samples
are provided in the bottom row of Fig. 2. It can be observedl i loss function of gradient-
enhanced methods may be smaller than the original DNN adehegion number increases,
verifying the strength of the gradient-enhanced methods.

4.2.2 Elliptic PDE with Random Inputs
We now consider the following stochastic elliptic PDE pexhl
{—V (a(z, w)Vu(z,w)) = f(z,w) in ZxQ,

(32)
u(z,w) =0 on 92 xQ,

—&— Original DNN 20% Gradient-enhanced DNN 100% Gradient-enhanced DNN

dim=2 dim=4 dim=8
10°

1072

-
o

Relative L2 error

=
5]
&

25 50 100 200 400 50 100 200 400 800 1600 200 400 800 1600 3200
Number of samples n Number of samples n Number of samples n

10°
10° A

107t

1072 4 102

Loss value

1074 4
1074 1073 4

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch Epoch

FIG. 1: Example 1. Approximation of1(x). Top: The relativel.? errors against the number of samples.
Bottom: The loss functions against increasing epochs Wwigmtumber of samples 400 fdr= 2, 1600 for
d = 4, and 3200 forl = 8.
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—— Original DNN 20% Gradient-enhanced DNN 100% Gradient-enhanced DNN
dim=4 dim=8 dim=16
100 o
100 4
-
g o
NCU 10*1 4
i} 1071
o
2
5107 102 4
& 10-2 4
25 50 100 200 400 50 100 200 400 800 1600 3200 50 100 200 400 800 1600 3200
Number of samples n Number of samples n Number of samples n
102 4
10 4 1]
] 10 101 4
10° 4
] 100 4 \ 1004 |
g0y 10-1 !
1 B 1071 <
% 10724
3 1 1072 4 1072 4
1073 4 i1
r = W 1073 4 = ¥ 1073 4
1041 | e
T T T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
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FIG. 2: Example 2. Approximation of>(x). Top: The relativel.? errors against the number of samples.
Bottom: The loss functions against increasing epochs waighrtumber of samples 400 for dim 4 and
3200 for dim= 8 and 16.

where? = [0,1)%, ¢ = (x1,72) is a spatial coordinate anf(x, w) is a deterministic force
term f(x, w) = cos(z1) sin(z2). The random diffusion coefficient(x, w) = aq4(x, w) with
one-dimensional spatial dependence takes the form (Badiudg 2010),

12 d
log(0aler.w) ~08) = 1+ vaw) (V35 ) 4 Y Gslami(w). (39)
k=2

where

_(1k 2
O = (ﬁL)l/Zexp<%> if k>1andL = 1i2

anddy (x) only depends on the first componentmf

sin(|%]mxy) if keven
k
2

(34)
cos(|§]mxy) if kodd

Here{Y;(w)}¢_, areindependent random variables uniformly distributetiérinterval—1, 1].

In the following we approximate the Qaldefined byg(w) = u((0.5,0.5), w), which is the
solution of Eqg. (32) at locatiomr = (0.5,0.5). Denote¥(w) = (Yi(w),...,Yy(w)). The
derivativesdq/d¥ = du(x, w)/0¥ are computed by the adjoint sensitivity method. Both for-
ward and adjoint solvers are implemented in the finite eldm@athod (FEM) project FEniCS
(Logg et al., 2012). In numerical tes{sl (w;)}, are generated from a uniform distribution in
[-1,1)¢, and we solve the forward PDE 320 times fbr= 5 and 1600 times fod = 10. Notice
that each partial derivative leads to an adjoint equatiben tthe number of adjoint equations
needed to solve id times that of the forward equations. It is worth mentionihgttthe cost of
generating derivatives a@f(w) in elliptic PDE (32) is negligible since they share the satifé s
matrix with q.
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After obtaining the function values as well as the corresiiog gradient information, we
apply the original DNN, 20% gradient-enhanced DNN, and 1@f#gient-enhanced DNN to
approximate the Qof(w). The learning rate for the Adam optimizer is 0.001 with hatdy
each 1000 steps. The relatif@ errors ford = 5 and 10 are presented at the top row of Fig. 3.
We also provide the loss functions of different modelsdoe 5 with the number of samples
320 andd = 10 with the number of samples 1600 in the bottom row of Fig. IBcAses verify
that gradient-enhanced methods significantly outperftwerotiginal approach. We can achieve
the same accuracy using much fewer training samples.

5. CONCLUSION

We have proposed gradient-enhanced deep neural networK)YBpproximations for function
approximations and uncertainty quantification. In our apph, the gradient information is in-
cluded as a regularization term. For this approach, we ptgsasterior estimates (by the two-
layer neural networks) similar to those in the path-normulagzed DNN approximations. We
also discuss the application of this approach to gradiehtseced uncertainty quantification, and
numerical experiments show that the proposed approachutparform the traditional DNN ap-
proach in many cases of interest. The discussion in this veoliknited to supervised learning
where labeled data are available, and in our future work, Weansider applying this gradient-
enhanced idea to unsupervised learning where the physjoatien is considered to yield the
loss function.

ACKNOWLEDGMENT

We would like to thank Professor Tao Zhou of the Chinese Aggdef Sciences for bringing
this topic to our attention and for his encouragement anpfbledliscussion.

—&— Original DNN 20% Gradient-enhanced DNN 100% Gradient-enhanced DNN
dim=5 dim=10
-
E -1
5 10
Y 1014
o
2
p]
o
7]
& 102
T T u T T T T T T T T
20 40 80 160 320 50 100 200 400 800 1600
Number of samples n Number of samples n

100 4

10—1 <4
10—1 <

10*2 4
1072 4 \

10*3 4

Ay

10-3 4
1074 §

0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000
Epoch Epoch

Loss value
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